Online Examinations (Even Sem/Part-I/Part-II Examinations 2020 - 2021

Course Name - - Discrete Structures Course Code - BCA202

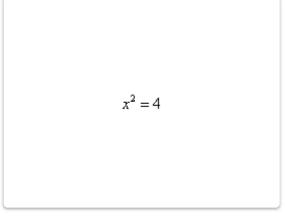
* You can	submit the f	form ONLY ONCE.
-----------	--------------	-----------------

- * Fill the following information for further process.
- * Required

1.	Email *
2.	Name of the Student *
3.	Enter Full Student Code *
4.	Enter Roll No *
5.	Enter Registration No *
6.	Enter Course Code *

7. Enter Course Name *

8. *


Mark only one oval.		
Diploma in Pharmacy		
Bachelor of Pharmacy		
B.TECH.(CSE)		
B.TECH.(ECE)		
BCA		
B.SC.(CS)		
B.SC.(BT)		
B.SC.(ANCS)		
B.SC.(HN)		
B.Sc.(MM)		
B.A.(MW)		
BBA		
B.COM		
B.A.(JMC)		
BBA(HM)		
BBA(LLB)		
B.OPTOMETRY		
B.SC.(MB)		
B.SC.(MLT)		
B.SC.(MRIT)		
B.SC.(PA)		
LLB		
B.SC(IT)-AI		
B.SC.(MSJ)		
Bachelor of Physiotherapy		
B.SC.(AM)		
Dip.CSE		
Dip.ECE		
DIP.EE		

DIP.ME
PGDHM
MBA
M.SC.(BT)
M.TECH(CSE)
LLM
M.A.(JMC)
M.A.(ENG)
M.SC.(MATH)
M.SC.(MB)
M.SC.(MSJ)
M.SC.(AM)
M.SC.CS)
M.SC.(ANCS)
M.SC.(MM)
B.A.(Eng)

Answer all the questions. Each question carry one mark.

9. 1.

" $\forall x \in R$ such that $x^2 = 4$ " is equivalent to Mark only one oval.

If x is a real no then

some real no has a square 4

- square of no real number is 4 none of these .
- 10. 2. The number of words of 5 different letters that can be formed by taking 2 letters from the word BOX and 3 letters from the word TABLE is

- 120
- 30
- 3600
- None of these

11.	3. Arithmetical minus (-) is a binary operation on
	Mark only one oval.
	set of all integers
	set of positive integers
	set of negative integers
	none
12.	4. Sum of the degree of a graph is always
	Mark only one oval.
	even
	odd
	prime
	none of these
13.	5.
	$p \vee \neg p \equiv$
	$p \lor \neg p =$ Mark only one oval.
	() contradiction

Tautology

an argument

none of these

	14.	6. The total number of ways of selecting 5 letters from the letters of the word INDEPENDENT is
		Mark only one oval.
		72 27 462 None of these
,	15.	7. Which of the following statements is false:
		Mark only one oval.
		Every group of prime order is cyclic
		Every cyclic group is commutative Every subgroup of a cyclic group is normal
		One of a, b or c is false
,	16.	8. Which of the following statement is true?
		Mark only one oval.
		A spanning tree is a super graph of G
		A spanning tree is a subgraph of G
		A spanning tree may not be a tree at all
		G may not have a spanning tree

17. 9.

$$p \lor (p \land q) \equiv$$

Mark only one oval.

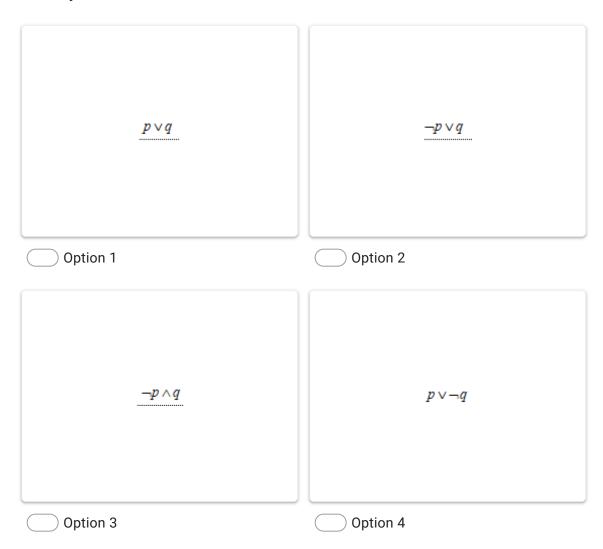
p	() q
$p \wedge q$	
Option 3	none of these

18. 10.

The solution of the recurrence relation $a_n = 2a_{n-1} + 1$, with $a_0 = 0$ is Mark only one oval.

- _____ 2^n
- 2^n-2
- 2^n+1
- 2^n-1

1	9	1	1	ı


The number of even permutation of the symmetric group	S_5 is
Mark only one oval.	
25	
<u> </u>	
<u>60</u>	
120	

20. 12. A tree always is a

Mark only one oval.
self-complement graph
Euler graph
simple graph
Hamiltonian graph .

21. 13. Let p: It is cold and q: It is raining, then the symbolic form of the statement 'It is cold or it is not raining' is

Mark only one oval.

22. 14. In how many ways 7 different beads can be arranged to form a necklace?

Mark only one oval.

250

300

360

350

23.	15. Matrix multiplication is an/a:
	Mark only one oval.
	Associative property Commutative property Triangular property None of these
24.	16. A tree is a Mark only one oval.
	any connected graph minimally connected graph Euler graph none .
25.	If ${}^{2n}C_3: {}^nC_2 = 44:3$ then the value of n is Mark only one oval.
	<u>6</u> 5

а

26.	18. The set of all real numbers under the usual multiplication operation is not group since
	Mark only one oval.
	multiplication is not associative
	identity element does not exist
	multiplication is not a binary operation
	zero has no inverse
27.	19.A vertex whose degree 1 is called
	Mark only one oval.
	isolated vertex
	pendant vertex
	even vertex
	none
28.	20. The chromatic number of a graph containing a circuit of length 11 is
	Mark only one oval.
	1
	2
	3
	None of these

29. 21.


	Let p: 'It is sunny afternoon 'and q: 'It is hot today'. Then the following proposition $\neg p \land \neg q$ can be written as
	Mark only one oval.
	It is not sunny afternoon and it is not hot today .
	It is false that It is not sunny afternoon or it is not hot today .
	It is false that It is sunny afternoon or it is hot today .
	None of these .
30.	22. Let R be a non-empty relation on a collection of sets defined by ARB if and only
	if $A \cap B = \emptyset$, then
	Mark only one oval.
	R is reflexive and transitive.
	R is symmetric and not transitive.
	R is an equivalence relation.
	R is not reflexive and not symmetric.

31. 23. Which of the following set is closed under numerical multiplication *Mark only one oval.*

{1,-1,0,2}	$\{1,i\}$
Option 1	Option 2
$\{1, \omega, \omega^2\}$	{ <i>w</i> ,1}
Option 3	Option 4

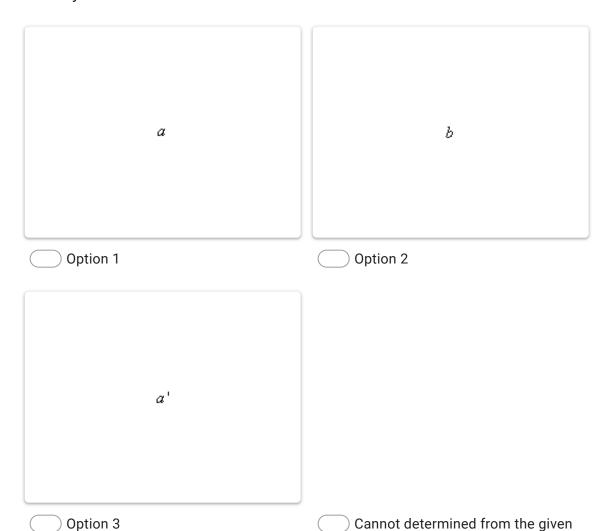
32. 24. Number of edges in a complete graph with n-vertices is:

Mark only one oval.

33. 25.

The proposition $p \wedge (q \wedge \neg q)$ is a Mark only one oval.

- contradiction
- Tautology
- an argument
- none of these


34. 26.

If nC_1 , nC_2 and nC_3 are in A.P., the value of n is Mark only one oval.

- \bigcirc 6
- 7
- 3

35. 27.

> In a Boolean algebra B, if a+b=b then a.b=?Mark only one oval.

data

Cannot determined from the given

28. To make a graph (with e edges and n vertices) free from any circuit the 36. minimum number of edges to be removes from G in

Mark only one oval.

_		
)	o n
	-)	6-11

e-n+1

\sim	~~
·) /	.)()
.7 /	/ 7

If the truth value of p and q are F and F respectively then the truth value of $\neg p \rightarrow \neg q$ is

Mark only one oval.

- \bigcap T
- () F
- both T and F
- None of these
- 38. 30. Range of R = {(0, 2), (2, 4), (3, 4), (4, 5)} is

Mark only one oval.

- (0, 2, 4, 5)
- (0, 2, 3, 4)
- {2, 4, 5}
- (3, 4, 5)
- 39. 31. Which of the following statements if false:

- Order of all the cosets of a subgroup are equal in an abelian group
- Any two left cosets of a subgroup are either disjoint or identical
- The order of each sub-group of a finite group is a divisor of the order of the group
- There exists sub-groups of a finite group for each divisors of the order of the group

40	32	Diikstra's	algorithm	is used to
4U.	OZ.	DIIKSUAS	aluullulli	15 USEU

Mark only one oval.

	ork	a netwo	in a	flow	maximum	find	
--	-----	---------	------	------	---------	------	--

find the shortest path from a specified vertex to another

to scan all vertices of a graph

none of these

41. 33.

Let p be proposition 'He is intelligent' and q be a proposition 'He is tall'. Then

$$\neg q \land \neg p$$

Mark only one oval.

He is either intelligent or tall

He is neither tall nor intelligent

He is not intelligent

He is intelligent and tall

42. 34.

Let N be the set of all natural number, $A = \{x \mid x \in N, x \ge 4\}$ and $B = \{x \mid x \in N, x < 5\}$. Then $A \cap B = ?$

Mark only one oval.

{4,5}

(4)

(0)

(9)

43.	35. A minimally connected graph cannot have a
	Mark only one oval.
	cycle
	component
	even vertex
	pendant vertex
44.	36. The number of committees of 2 boys and 3 girls that can be formed out of 7 boys and 6 girls i
	Mark only one oval.
	21
	20
	420
	50400
45	
45.	37. A complete graph must be a
	Mark only one oval.
	circuit
	regular graph
	non-simple graph
	null-graph

46.	38. A complete graph with five vertices is	s called
	Mark only one oval.	
	Regular graph	
	Kuratowski's first graph	
	Caratowski's second graph	
	None of these	
47.	39. The negation of the statement ' No or	ne wants to buy my house' is
	Mark only one oval.	
		φ
	(0)	Option 2
	(6)	Option 2
	─ {}	Both (b) & (c)

48.	40.
	If $32 \equiv a \pmod{7}$. Then the value of a is- Mark only one oval.
	10111213
49.	41. A minimally connected graph is a Mark only one oval. Binary tree Hamiltonian graph Tree Regular graph
50.	42. The number of ways in which 6 different flowers can be arranged in a garland is Mark only one oval. 120 60 240 none of these

51. 43.

Binary operation on a set A is a mapping from $A \times A$ to Mark only one oval.

A

- the set of all real numbers
- Option 2

 $A \! imes \! A$

Option 3

none

52. 44. In a graph if e=[u, v], Then u and v are called

- Endpoints of e
- Neighbors
- Adjacent nodes
- All of these

53.	45. Set consisting of all second element	s of each ordered pair in relation is called
	Mark only one oval.	
	domain of relation range of relation subset	
	complement of a set	
54.	46.	
	A subgroup H of a group G is normal if for all $x \in Mark$ only one oval.	$G ext{ and } h \in H$
	$xhx^{-1} \in \mathcal{H}$	$xhx^{-1} \in G$
	Option 1	Option 2
	$xh^{-1} \in H$	$x^{-1}h \in H$
	Option 3	Option 4

55.	47. A connected graph with 150 vertices	s and 149 edges is
	Mark only one oval.	
	Not a minimally connected graph	
	Euler graph	
	Option 3Binary tree	
	Tree	
56.	48.	
	$\neg \left(p \land q \right) \equiv$	
	Mark only one oval.	
	$\neg p \land \neg q$	$p \lor q$
	Option 1	Option 2
	$\neg p \lor \neg q$	

none of these

Option 3

57. 49. The Fibonacci sequence is

Mark only one oval.

- 0,1,2,3,5,8......
- 0,1,2,3,4,5,....
- 1,1,2,3,5,8,.....
- 0,-1,3,-6,10,......
- 58. 50.

If
$$f(x) = \frac{ax - b}{bx - a}$$
 then $f(x) \cdot f\left(\frac{1}{x}\right)$ is

Mark only one oval.

- () 1
- () 3
- none

59. 51.

The number of elements in the group $(Z_3,+)$ is

- 1
- 3
- \bigcirc 6

60.	52. Sum of the degrees of all vertices of a binary tree is even if the tree has
	Mark only one oval.
	odd no of vertices
	even no of vertices
	four vertices
	none of these .
61.	53. If n pigeonholes are occupied by n+1 pigeons, then at least number of
	hole is occupied by more than one pigeon.
	Mark only one oval.
	2
	1
	3
	none of these
62.	54. A function from A to B is called onto function if its range is
	Mark only one oval.
	В
	\bigcirc A
	Neither A nor B
	Both A and B

63.	55. Kuratowski's graph is a
	Mark only one oval.
	Planar graph
	Regular graph
	Tree
	None of these
64.	56.
	'Any proposition'∨ 'a tautology'
	Mark only one oval.
	The proposition
	tautology
	contradiction
	none of these
65.	57. Order of the power set of a set of order n is
	Mark only one oval.
	\bigcap n
	2n
	2^n

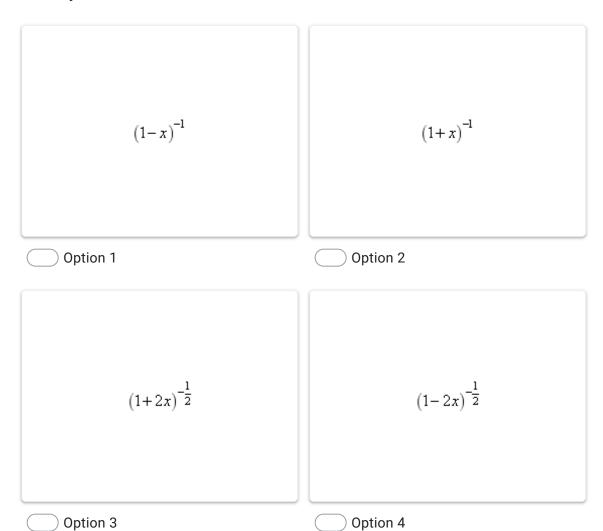
66. 58.

If
$$\gcd(a,b)=c$$
 , then $\frac{a}{c}$ and $\frac{b}{c}$ are

Mark only one oval.

- oboth prime
- both composite
- relatively prime to each other
- None of these
- 67. 59. Every vertex of a null graph is

Mark only one oval.


- Pendant
- () Isolated
- Odd
- none of these
- 68. 60. A single vertex graph is

- 1-chromatic
- 2-chromatic
- 3-chromatic
- 4-chromatic

69.	61. The number of committees of 2 boys and 3 girls that can be formed out of 7 boys and 6 girls is
	Mark only one oval.
	21
	20
	420
	50400
70.	62. A self-loop cannot be included in a
	Mark only one oval.
	walk
	circuit
	trail
	path

71. 63. The generating function for the sequence <1,-1,1,-1,...> is

Mark only one oval.

72. 64.

$$p\vee \big(p\wedge q\big)\!\equiv\!$$

p	q
$p \wedge q$	
four vertices	none of these .

73. 65.

The sequence represented by the function $\frac{1}{1-5x}$ is

Mark only one oval.

Option 3

 $\left\{3^n\right\} \qquad \left\{5^n\right\}$ Option 1 $\left\{5^n+1\right\} \qquad \left\{4^n\right\}$

Option 4

71	44
/4	ററ

If $a_n = a_{n-1} + 9$, $n \ge 1$ and $a_0 = 5$ then $a_n = Mark$ only one oval.

- 9+5n
- () 5+9n
- 9n
- () 5r

75. 67.

The function $f: R \to R$ defined by $f(x) = x^2$, where R is the set of all real numbers. Then f is

- surjective
- injective
- bijective
- none of these

76. 68.

For $A = \{-2, -1, 0, 1, 2\}$ and $f: A \to R$, f is defined as $f(x) = x^2 + 1$. Then which of the following is true, where $f(A) = \{f(x) : x \in A\}$.

Mark only one oval.

$$f(A) = \{5, 2, 1\}$$

$$f(A) = \{5, 2, 10\}$$

Option 1

Option 2

$$f(A) = \{5,8,10\}$$

$$f(A) = \{7,8,10\}$$

Option 3

Option 4

77. 69. For any positive integer m, which of the following is true?

Mark only one oval.

gcd(ma, mb) = m

gcd(ma, mb) = ab

Option 1

Option 2

gcd(ma, mb) = mgcd(a, b)

gcd(ma, mb) = mlcm(a, b)

Option 3

Option 4

78. 70.

If (G_{+}) be a group with identity e. If ab = e then b.a = ? Mark only one oval.

e a $c,but c \neq e$

This content is neither created nor endorsed by Google.

Google Forms