Online Examinations (Even Sem/Part-I/Part-II Examinations 2020 - 2021

Course Name - - Design and Analysis of Algorithm Course Code - PCC-CS402

* You can submit the form ONLY ONCE.

* F	* Fill the following information for further process Required
1.	Email *
2.	Name of the Student *
3.	Enter Full Student Code *
4.	Enter Roll No *
5.	Enter Registration No *
6.	Enter Course Code *

7. Enter Course Name *

8. *

Mark only one oval.		
Diploma in Pharmacy		
Bachelor of Pharmacy		
B.TECH.(CSE)		
B.TECH.(ECE)		
BCA		
B.SC.(CS)		
B.SC.(BT)		
B.SC.(ANCS)		
B.SC.(HN)		
B.Sc.(MM)		
B.A.(MW)		
BBA		
B.COM		
B.A.(JMC)		
BBA(HM)		
BBA(LLB)		
B.OPTOMETRY		
B.SC.(MB)		
B.SC.(MLT)		
B.SC.(MRIT)		
B.SC.(PA)		
LLB		
B.SC(IT)-AI		
B.SC.(MSJ)		
Bachelor of Physiotherapy		
B.SC.(AM)		
Dip.CSE		
Dip.ECE		
<u>DIP.EE</u>		
DIPCE		

9.

	·
	<u>DIP.ME</u>
	PGDHM
	MBA
	M.SC.(BT)
	M.TECH(CSE)
	LLM
	M.A.(JMC)
	M.A.(ENG)
	M.SC.(MATH)
	M.SC.(MB)
	MCA
	M.SC.(MSJ)
	M.SC.(AM)
	M.SC.CS)
	M.SC.(ANCS)
	M.SC.(MM)
	B.A.(Eng)
Α	nswer all the questions. Each question carry one mark.
•	1.Which of the following is/are property/properties of a dynamic programming problem?
	Mark only one oval.
	Which of the following is/are property/properties of a dynamic programming problem?
	Overlapping sub problems
	Greedy approach
	Both optimal substructure and overlapping sub problems

10.	2. If a problem can be solved by combining optimal solutions to non-overlapping problems, the strategy is called
	Mark only one oval.
	Dynamic programming
	Greedy
	Divide and conquer
	Recursion
11.	3. In dynamic programming, the technique of storing the previously calculated values is called
	Mark only one oval.
	Saving value property
	Storing value property
	Memorization
	Mapping
12.	4. When a top-down approach of dynamic programming is applied to a problem, it usually
	Mark only one oval.
	Decreases both, the time complexity and the space complexity
	Decreases the time complexity and increases the space complexity
	Increases the time complexity and decreases the space complexity
	Increases both, the time complexity and the space complexity

13.	5. Which of the following problems should be solved using dynamic programming?
	Mark only one oval.
	Merge sort
	Binary search
	Longest common subsequence
	Quicksort
14.	6. The O/1 Knapsack problem is an example of
	Mark only one oval.
	Greedy algorithm
	2D dynamic programming
	1D dynamic programming
	Divide and conquer
15.	7.You are given a knapsack that can carry a maximum weight of 60. There are 4 items with weights {20, 30, 40, 70} and values {70, 80, 90, 200}. What is the maximum value of the items you can carry using the knapsack?
	Mark only one oval.
	<u> </u>
	200
	<u></u>
	90

16.	8.Consider the two matrices P and Q which are 10×20 and 20×30 matrices respectively. What is the number of multiplications required to multiply the two matrices?
	Mark only one oval.
	10 X 20
	20 X 30
	10 X 30
	10 X 20 X 30
17.	9. Which of the problems cannot be solved by backtracking method?
	Mark only one oval.
	n-queen problem
	Subset sum problem
	Hamiltonian circuit problem
	Travelling salesman problem
18.	10. What happens when the backtracking algorithm reaches a complete solution?
	Mark only one oval.
	It backtracks to the root
	It continues searching for other possible solutions
	It traverses from a different route
	Recursively traverses through the same route

19.	11. In what manner is a state-space tree for a backtracking algorithm constructed?
	Mark only one oval.
	Depth-first search
	Breadth-first search
	Twice around the tree
	Nearest neighbor first
20.	12.Which one of the following is an application of the backtracking algorithm?
	Mark only one oval.
	Finding the shortest path
	Finding the efficient quantity to shop
	Ludo
	Crossword
21.	13.Which of the following logical programming languages is not based on backtracking?
	Mark only one oval.
	Icon
	Prolog
	Planner
	Fortran

22.	14The problem of finding a subset of positive integers whose sum is equal to a given positive integer is called as?
	Mark only one oval.
	n- queen problem
	Subset sum problem
	Knapsack problem
	Hamiltonian circuit problem
23.	15. The problem of placing n queens in a chessboard such that no two queens attack each other is called as?
	Mark only one oval.
	n-queen problem
	Eight queens puzzle
	Four queens puzzle
	1-queen problem
24.	16. For how many queens was the extended version of Eight Queen Puzzle applicable for n X n squares?
	Mark only one oval.
	5
	<u> </u>
	8
	\bigcap n

25.	17. How many solutions are there for 8 queens on 8 X 8 board?
	Mark only one oval.
	12
	91
	92
	93
26.	18. How many fundamental solutions are there for the eight queen puzzle?
	Mark only one oval.
	92
	10
	11
	12
27.	19. Of the following given options, which one of the following does not provides an optimal solution for 8-queens problem?
	Mark only one oval.
	5,3,8,4,7,1,6,2
	1,6,3,8,3,2,4,7
	4,1,5,8,6,3,7,2
	6,2,7,1,4,8,5,3

28.	20.How many possible solutions occur for a 10-queen problem?
	Mark only one oval.
	850 742 842 724
29.	21. Of the following given options, which one of the following is a correct option that provides an optimal solution for 4-queens problem?
	Mark only one oval.
	3,1,4,2
	2,3,1,4
	4,3,2,1
	4,2,3,1
30.	22. Which of the following methods can be used to solve n-queen's problem?
	Mark only one oval.
	Greedy algorithm
	Divide and conquer
	Iterative improvement
	Backtracking

31.	23. In n-queen problem, how many values of n does not provide an optimal solution?
	Mark only one oval.
	3
	4
32.	24. In how many directions do queens attack each other?
	Mark only one oval.
	1
	2
	3
	4
33.	25. Given items as {value,weight} pairs {{60,20},{50,25},{20,5}}. The capacity of knapsack=40. Find the maximum value output assuming items to be divisible and non-divisible respectively.
	Mark only one oval.
	100, 80
	110,70
	130, 110
	110, 80

34.	26.The main time taking step in fractional knapsack problem is
	Mark only one oval.
	Breaking items into fraction
	Adding items into knapsack
	Sorting
	Looping through sorted items
35.	27. Given items as {value,weight} pairs {{40,20},{30,10},{20,5}}. The capacity of knapsack=20. Find the maximum value output assuming items to be divisible.
	Mark only one oval.
	<u> </u>
	80
	100
	40
36.	28. What is the objective of the knapsack problem?
	Mark only one oval.
	To get maximum total value in the knapsack
	To get minimum total value in the knapsack
	To get maximum weight in the knapsack
	To get minimum weight in the knapsack

37.	29.Fractional knapsack problem is also known as
	Mark only one oval.
	0/1 knapsack problem
	Continuous knapsack problem
	Divisible knapsack problem
	Non continuous knapsack problem
38.	30.Which bit is reserved as a parity bit in an ASCII set?
	Mark only one oval.
	First
	Seventh
	Eighth
	Tenth
39.	31.What is the running time of the Huffman encoding algorithm?
39.	31.What is the fullilling time of the flutiman encoding algorithm:
	Mark only one oval.
	O(C)
	O(log C)
	O(C log C)
	O(N log C)

40.	32. Recurrence equation formed for the tower of hanoi problem is given by
	Mark only one oval.
	T(n) = 2T(n-1)+n
	T(n) = 2T(n/2)+c
	T(n) = 2T(n-1)+c
	T(n) = 2T(n/2)+n
41.	33.Recursive solution of tower of hanoi problem is an example of which of the following algorithm?
	Mark only one oval.
	Dynamic programming
	Backtracking
	Greedy algorithm
	Divide and conquer
42.	34.Under what case of Master's theorem will the recurrence relation of merge sort fall?
	Mark only one oval.
	1
	2
	3
	It cannot be solved using master's theorem

43.	35. What is the condition for proper coloring of a graph?
	Mark only one oval.
	two vertices having a common edge should not have same color
	two vertices having a common edge should always have same color
	all vertices should have a different color
	all vertices should have same color
44.	36.The number of colors used by a proper coloring graph is called?
	Mark only one oval.
	k coloring graph
	x coloring graph
	m coloring graph
	n coloring graph
45.	37. What will be the chromatic number for an empty graph having n vertices?
	Mark only one oval.
	0
	1
	2
	\bigcap n

46.	38. What will be the chromatic number for a line graph having n vertices?
	Mark only one oval.
	0
	2
	n
47.	39. Which algorithm is used to solve a minimum cut algorithm?
	Mark only one oval.
	Gale-Shapley algorithm
	Ford-Fulkerson algorithm
	Stoer-Wagner algorithm
	Prim's algorithm
48.	40 separates a particular pair of vertices in a graph.
	Mark only one oval.
	line
	arc
	cut
	flow

49.	41 is a data structure used to collect a system of cuts for solving min-
	cut problem
	Mark only one oval.
	Gomory-Hu tree
	Gomory-Hu graph
	Dancing tree
	AA tree
50.	42.Which algorithm is used to solve a maximum flow problem?
00.	
	Mark only one oval.
	Prim's algorithm
	Kruskal's algorithm
	Dijkstra's algorithm
	Ford-Fulkerson algorithm
51.	43. The first step in the naïve greedy algorithm is?
	Mark only one oval.
	Analyzing the zero flow
	calculating the maximum flow using trial and error
	adding flows with higher values
	reversing flow if required

52.	44.A simple acyclic path between source and sink which pass through only positive weighted edges is called?		
	Mark only one oval.		
	Augmenting path		
	critical path		
	residual path		
	maximum path		
53.	45. Dijkstra's Algorithm is used to solve problems.		
	Mark only one oval.		
	All pair shortest path		
	Single source shortest path		
	Network flow		
	Sorting		
54.	46. Which of the following is the most commonly used data structure for implementing Dijkstra's Algorithm?		
	Mark only one oval.		
	Max priority queue		
	Stack		
	Circular queue		
	Min priority queue		

55.	47. How many priority queue operations are involved in Dijkstra's Algorithm?
	Mark only one oval.
56.	48. The maximum number of times the decrease key operation performed in Dijkstra's algorithm will be equal to
	Mark only one oval.
	Total number of vertices Total number of edges Number of vertices – 1 Number of edges – 1
57.	49.What is running time of Dijkstra's algorithm using Binary min- heap method? Mark only one oval. O(V) O(VlogV) O(E) O(ElogV)

58.	50.Bellmann ford algorithm provides solution for problems.
	Mark only one oval.
	All pair shortest path
	Sorting
	Network flow
	Single source shortest path
59.	51. What is the basic principle behind Bellmann Ford Algorithm?
	Mark only one oval.
	Interpolation
	Extrapolation
	Regression
	Relaxation
60.	52. Bellmann Ford Algorithm is an example for
	Mark only one oval.
	Dynamic Programming
	Greedy Algorithms
	Linear Programming
	Branch and Bound

61.	53.Floyd Warshall's Algorithm can be applied on
	Mark only one oval.
	Undirected and unweighted graphs
	Undirected graphs
	Directed graphs
	Acyclic graphs
62.	54. Floyd Warshall Algorithm can be used for finding
	Mark only one oval.
	Single source shortest path
	Topological sort
	Minimum spanning tree
	Transitive closure
63.	55.What procedure is being followed in Floyd Warshall Algorithm?
	Mark only one oval.
	Top down
	Bottom up
	Big bang
	Sandwich

64.	56. The travelling salesman problem can be solved using
	Mark only one oval.
	A spanning tree A minimum spanning tree Bellman – Ford algorithm
	DFS traversal
65.	57.Kruskal's algorithm is used to Mark only one oval.
	find minimum spanning tree find single source shortest path find all pair shortest path algorithm traverse the graph
66.	58. Time Complexity of DFS is? (V – number of vertices, E – number of edges) Mark only one oval. O(V + E)
	O(V) O(E) None of the mentioned

67.	59.A person wants to visit some places. He starts from a vertex and then wants to visit every vertex till it finishes from one vertex, backtracks and then explore other vertex from same vertex. What algorithm he should use?
	Mark only one oval.
	Depth First Search
	Breadth First Search
	Trim's algorithm
	None of the mentioned
68.	60.Branch and bound is a
	Mark only one oval.
	Problem solving technique
	Data structure
	Sorting algorithm
	Type of tree

This content is neither created nor endorsed by Google.

Google Forms