Online Examinations (Even Sem/Part-I/Part-II Examinations 2020 - 2021

Course Name - - Discrete Mathematics Course Code - PCC-CS404

* [* You can submit the form ONLY ONCE. * Fill the following information for further process * Required		
1.	Email *		
2.	Name of the Student *		
3.	Enter Full Student Code *		
4.	Enter Roll No *		
5.	Enter Registration No *		
6.	Enter Course Code *		

7. Enter Course Name *

8.

Mark only one oval.
Diploma in Pharmacy
Bachelor of Pharmacy
B.TECH.(CSE)
B.TECH.(ECE)
BCA
B.SC.(CS)
B.SC.(BT)
B.SC.(ANCS)
B.SC.(HN)
B.Sc.(MM)
B.A.(MW)
BBA
B.COM
B.A.(JMC)
BBA(HM)
BBA(LLB)
B.OPTOMETRY
B.SC.(MB)
B.SC.(MLT)
B.SC.(MRIT)
B.SC.(PA)
LLB
B.SC(IT)-AI
B.SC.(MSJ)
Bachelor of Physiotherapy
B.SC.(AM)
Dip.CSE
Dip.ECE
<u>DIP.EE</u>
DIPCE

	Chinio Examinationo (Evon Contra die in Examinationo 2020	
<u>DIP.ME</u>		
PGDHM		
MBA		
M.SC.(BT)		
M.TECH(CSE)		
LLM		
M.A.(JMC)		
M.A.(ENG)		
M.SC.(MATH)		
M.SC.(MB)		
MCA		
M.SC.(MSJ)		
M.SC.(AM)		
M.SC.CS)		
M.SC.(ANCS)		
M.SC.(MM)		
B.A.(Eng)		

Answer all the questions. Each question carry one mark.

9. 1.

According to De-Morgan's law $[A \cup (B \cap C)]^c$ Mark only one oval.

 $A^c \cap (B \cap C)$ $A^c \cap (B^c \cup C^c)$ Option 1 Option 2

Option 3

none of these

Option 5

10.	2. An one-to-one function is also known as
	Mark only one oval.
	injective function
	surjective function
	bijective function
	None of these
11.	3. Two finite sets have m and n element respectively. The total number of subsets of first set is 2 times the total number of sub sets of the second set. Then the possible values of m and n respectively are
	Mark only one oval.
	5, 2
	4,7
	7,6
	2, 5
12.	4. The relation { (1,2), (1,3), (3,1), (1,1), (3,3), (3,2)} on {1, 2, 3, 4} is
	Mark only one oval.
	Reflexive
	Symmetric
	Transitive

Asymmetric

13. 5.

Which is the correct statement about the function $f:\mathbb{Z}\to\mathbb{Z}$ defined by f(x)=2x? Mark only one oval.

f(x) is one-to-one and onto

f(x) is one-to-one but not onto

Option 1

Option 2

f(x) is not one-to-one but onto

f(x) is neither one-to-one nor onto

Option 3

Option 4

14. 6.How many reflexive relations are possible on a set with n elements?

() 2n (n+	-1)	/ 2	_
------------	-----	-----	---

15. 7.

If $S = \{\emptyset\}$ then power set of S is _____.

Mark only one oval.

Option 3

{Ø}	Ø
Option 1	Option 2
$\{\phi,\{\phi\}\}$	

None of above

16. 8.Out of the following the singleton set (whose cardinality is one) is Mark only one oval.

$$A = \{ x : 3 x^2 - 27 = 0, x \in Q \}$$

$$B = \{ x : x^2 - 1 = 0, x \in R \}$$

Option 1

Option 2

$$C = \{ \mathbf{x} : 30 \mathbf{x} - 59 = 0 , \mathbf{x} \in \mathbf{N} \}$$

$$D = \{ \; \mathbf{x} : \mathbf{x}^2 - 1 = 0 \; , \; \mathbf{x} \in \mathbf{N} \}$$

Option 3

Option 4

17. 9.

If A and B are sets and AU B= $A \cap B$, then

Mark only one oval.

$A = \Phi$	$\mathbf{B}=\mathbf{\Phi}$

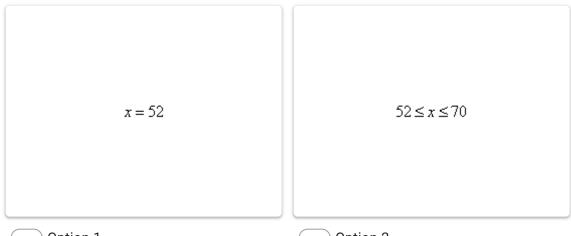
Option 1

Option 2

Option 3

none of these

10. The number of elements in the power set of the set {a, b} is
 Mark only one oval.


$\overline{}$	2
	_

<u>4</u>

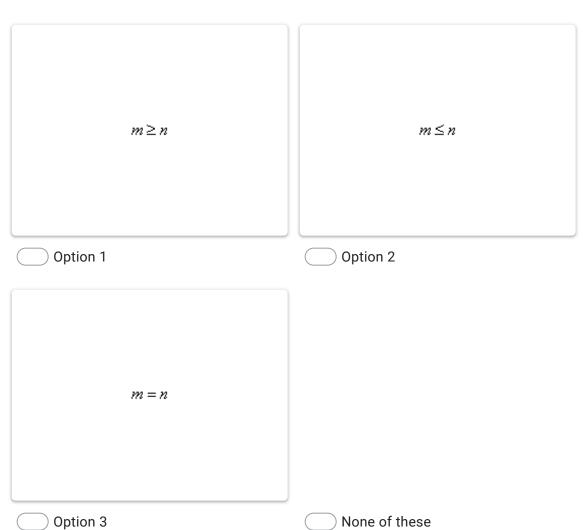
 \bigcirc 6

11. A survey shows that 70% of the Indian like mango wheres 82% like apple. If x% 19. of Indian like both mango and apples, then

Mark only one oval.

Option 1 Option 2

20. 12.


> The class [-11] in Z_s is equal to Mark only one oval.

- [1]
- [4]
- None of these

21.	13. Which of the following is a countably infinite set?
	Mark only one oval.
	◯ Z
	\bigcap R
	(2)
	No such set exist
22.	14.Two positive integers are said to be relatively prime if
	Mark only one oval.
	there product is a prime number
	both are prime numbers
	there lcm is a prime number
	there gcd is 1

23. 15. Let R be a reflexive relation of a finite set A having n elements and let therebe m ordered pairs in R. Then

Mark only one oval.

24. 16. The product of two countably infinite set is

Mark only one oval.

_			
	1	fir	sit a
	-)	111	nite

countably infinite

uncountable

either countably infinite or uncountable

25	17 Th	number	of over	nrima	:-
ZO.	TZ. THE	number	or even	prime	-15

- \bigcirc 1
- \bigcirc 2
- \bigcirc 0
- infinitely many

Mark only one oval.

26. 18.

The domain of the function f, where $f(x) = \frac{1}{|x|+1}$ is

- () F
- R\{-1,1}
- None of these

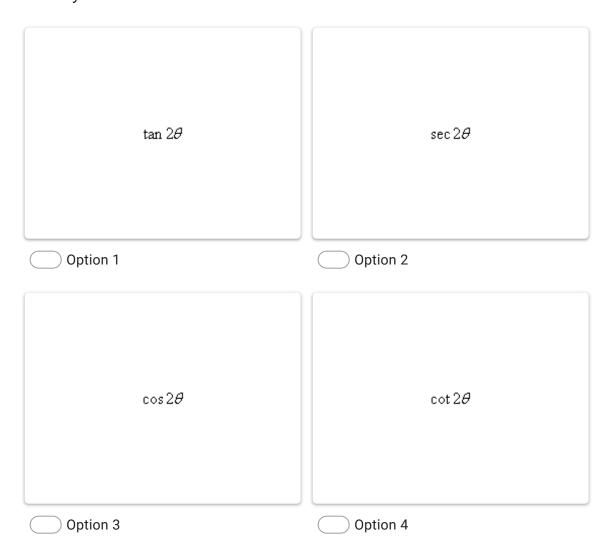
27. 19.

The number of relation from a set of m elements to a set of n elements is Mark only one oval.

mn	2 ^{mm}
Option 1	Option 2
2 ^{m+m}	
Option 3	None of these

28. 20.

Let R be the relation over the set $N \times N$ and is defined by $(a,b) R(c,d) \Rightarrow a+d=b+c$ then R is


Mark only one oval.

- Reflexive only
- Symmetric only
- Transitive only
- An equivalence relation
- 29. 21. Which of the following is a partially ordered relation on A= {1, 2, 3}?

- {(1,2), (2,2)}
- (1,2), (2,3), (3,2)}
- {(1, 1), (1, 2), (2,1)}
- None of these

30. 22.

If
$$f(x) = \frac{1-x}{1+x}$$
 then $f(f(\cos 2\theta)) =$

31. 23.

The inverse of $\frac{7^x - 7^{-x}}{7^x + 7^{-x}}$ is

Mark only one oval.

$$\frac{1}{2}\log_7 \frac{1+x}{1-x}$$

$$\log_7 \frac{1-x}{1+x}$$

Option 1

Option 2

$$\log_{\frac{1}{2}} \frac{1-x}{1+x}$$

 $\frac{1}{2}\log_e \frac{1+x}{1-x}$

Option 3

Option 4

32. 24. For all odd integer a, gcd(3a,3a+2)=

- None of these

33.	25. The number of committees of 2 boys and 3 girls that can be formed out of 7 boys and 6 girls is
	Mark only one oval.
	21
	20
	420
	50400
34.	26. In how many ways 7 different beads can be arranged to form a necklace?
	Mark only one oval.
	250
	300
	360
	720
35.	27. A farmer buys 3 cows, 2 pigs, and 4 hens from a man who has 6 cows, 5 pigs, and 8 hens. The number m of choices that the farmer has:
	Mark only one oval.
	2000
	14000
	200
	1400

36.	28.
	If nC_1 , nC_2 and nC_3 are in A.P., the value of n is Mark only one oval.
	8
	4
37.	29.The number of distinct permutations that can be formed from all the letters of the word UNUSUAL is
	Mark only one oval.
	5040
	840
	210
	35
38.	30.The minimum number of students needed to guarantee that 4 of them belong
	to the same class (1st year, 2nd year, 3rd year and 4th year) is
	Mark only one oval.
	<u> </u>
	15
	13
	11

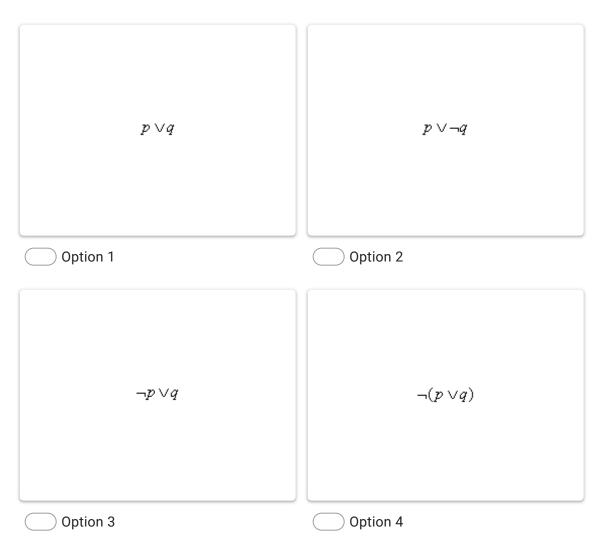
;	39.	31. Find the number m of committees of 5 with a given chairperson that can be selected from 12 people.
		Mark only one oval.
		495
		3960
		4950
		None of these
	40.	32. Find the number of ways a coin can be tossed 6 times so that there is exactly 3 heads and no two heads occur in a row.
		Mark only one oval.
		22
		20
		7
		None of these

41. 33.

Negation of $\exists x \forall y, p(x, y)$ is Mark only one oval.

$\forall x\exists y, \neg p(x, y)$	$\exists x \exists y , \neg p(x,y)$
Option 1	Option 2

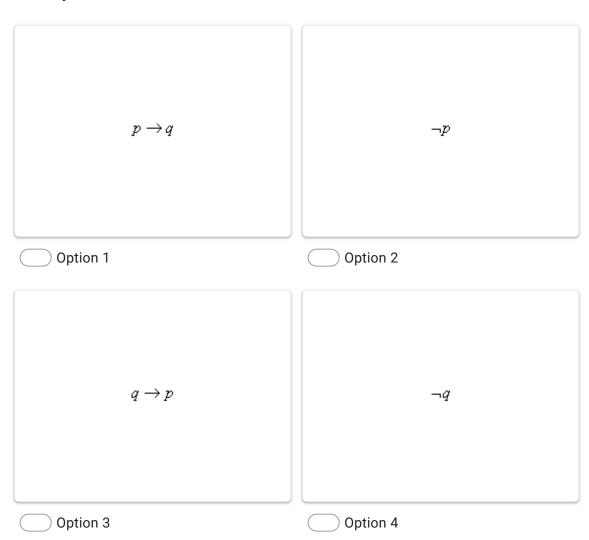
$\forall x \forall y, p(x,y)$	


____ magnetic disk

42. 34. Every vertex of a null graph is

Option 3

- Pendant
- () Isolated
- Odd
- none of these


43. 35. If p:"anil is rich" and q:"kanchan is poor" then the symbolic from the statement "Either Anil or Kanchan is rich" is

44. 36.

If $p \leftrightarrow q \equiv (p \rightarrow q) \land r$, then r is

Mark only one oval.

45. 37. A statement T is called tautology if

- T is true for all possible values of its variables
- T is false for all values of its variables
- T is true as well as false for few possible values of its variables
- None of these

38. Let P: We should be honest., Q: We should be dedicated .,R: We should be 46. overconfident. Then 'We should be honest or dedicated but not overconfident.' is best represented by

Mark only one oval.

	~PV	~Q	٧	R
--	-----	----	---	---

P ∧ ~Q ∧ R

P V Q A R

P V Q A ~R

47. 39.

" $\forall x \in \mathbb{R}$ such that $x^2 = 4$ " is equivalent to Mark only one oval.

If x is real number then $x^2 = 4$

Option 1

Some real numbers have square 4

Square of no real number is 4

None of these

48. 40.

Let $P(x)$ states " x is wealthy" and $Q(x)$ states " x is married". Domain is "all men", then $\exists x P(x)$ is		
Mark only one oval.		
All men are wealthy		
At least one man is wealthy		
No man is wealthy		
None of these		

49. 41.

Inverse of " $\neg p \rightarrow q$ " is Mark only one oval.

p o q	$\neg p \rightarrow \neg q$
Option 1	Option 2
p ightarrow eg q	$\neg q ightarrow \neg p$
Option 3	Option 4

50. 42.

 $p \rightarrow q$ is logically equivalent to Mark only one oval.

¬p V ¬q	p∨ ¬q
Option 1	Option 2
¬p V q	¬p ∧ q
Option 3	Option 4

51. 43.

If
$$P(n): 1+3+5+...+(2n-1)=n^2$$
 is

Mark only one oval.

true for n > 1	true Vive N
Option 1	Option 2
true for no n	none of these
Option 3	Option 4

52. 44. The degree of an isolated vertex is

- O

- none

53. 45. By induction hypothesis, the series 12 + 22 + 32 + ... + p2 can be proved equivalent to

Mark only one oval.

$$p(p+1)$$

$$\left(\frac{p(p+1)}{2}\right)^2$$

Option 1

Option 2

$$\frac{p(p+1)}{4}$$

 $\frac{p(p+1)(2p+1)}{6}$

Option 3

Option 4

54. 46.

Let * be a binary operation on a non-empty set S. Then (S,*) is called a Mark only one oval.

- groupoid
- semi-group
- monoid
- group

55.	47.
	If $(G,.)$ is a group with identity e such that $a^2 = e$, $\forall a \in G$, then G is Mark only one oval.
	an abelian group
	a non-abelian group
	non-associative
	none of these
56.	48. A complete graph must be a
	Mark only one oval.
	circuit
	regular graph
	non-simple graph
	null-graph
57.	49. The degree of the common vertex of two edges in series is
	Mark only one oval.
	0
	2
	may be more than 2 .

58.	50. A simple graph has
	Mark only one oval.
	no parallel edges no loops no parallel edges and no loops no isolated vertex
59.	51. A tree is a
	Mark only one oval.
	any connected graph minimally connected graph Euler graph none .
60.	52. A binary tree has exactly Mark only one oval.
	two vertices of degree 2 one vertex of degree 2 one vertex of degree 1 one vertex of degree 3.

01.	53.5um of the degrees of all vertices of a binary tree is even if the tree has
	Mark only one oval.
	odd no of vertices even no of vertices four vertices none of these .
62.	54. A tree always is a
	Mark only one oval.
	self complement graph Euler graph simple graph Hamiltonian graph.
63.	55. Dijkstra's algorithm is used to Mark only one oval.
	find maximum flow in a network to scan all vertices of a graph find the shortest path from a specified vertex to another none of these

64.	56. The minimum number of pendant vertices in a tree with five vertices is
	Mark only one oval.
65.	57.Which of the following statement is true?
	Mark only one oval.
	A spanning tree is a super graph of G
	A spanning tree is a subgraph of G
	A spanning tree may not be a tree at all
	G may not have a spanning tree
66.	58. In a graph if e=[u, v], Then u and v are called
	Mark only one oval.
	Endpoints of e
	Neighbors
	Adjacent nodes
	Endpoints of e, Neighbors & Adjacent nodes

67.	59.A graph G has a spanning tree iff G is
	Mark only one oval.
	regular
	connected
	simple
	tree
68.	60.If a graph has 6 vertices and 15 edges then the size of its adjacency matrix is
	Mark only one oval.
	6X6
	6X15
	15X6
	15X15

This content is neither created nor endorsed by Google.

Google Forms