Online Examinations (Even Sem/Part-I/Part-II Examinations 2020 - 2021

Course Name - - Design and Analysis of Algorithm Course Code - BCSE401

* You can	submit the f	form ONLY ONCE.
-----------	--------------	-----------------

- * Fill the following information for further process.
- * Required

1.	Email *
2.	Name of the Student *
3.	Enter Full Student Code *
4.	Enter Roll No *
5.	Enter Registration No *
6.	Enter Course Code *

7. Enter Course Name *

8. *

Mark only one oval.		
Diploma in Pharmacy		
Bachelor of Pharmacy		
B.TECH.(CSE)		
B.TECH.(ECE)		
BCA		
B.SC.(CS)		
B.SC.(BT)		
B.SC.(ANCS)		
B.SC.(HN)		
B.Sc.(MM)		
B.A.(MW)		
BBA		
B.COM		
B.A.(JMC)		
BBA(HM)		
BBA(LLB)		
B.OPTOMETRY		
B.SC.(MB)		
B.SC.(MLT)		
B.SC.(MRIT)		
B.SC.(PA)		
LLB		
B.SC(IT)-AI		
B.SC.(MSJ)		
Bachelor of Physiotherapy		
B.SC.(AM)		
Dip.CSE		
Dip.ECE		
<u>DIP.EE</u>		
DIPCE		

9.

<u>DIP.ME</u>
PGDHM
MBA
M.SC.(BT)
M.TECH(CSE)
LLM
M.A.(JMC)
M.A.(ENG)
M.SC.(MATH)
M.SC.(MB)
M.SC.(MSJ)
M.SC.(AM)
M.SC.CS)
M.SC.(ANCS)
M.SC.(MM)
B.A.(Eng)
Answer all the questions. Each question carry one mark.
1. Best case in inse1. Which of the following is/are property/properties of a dynamic programming problem?rtion sort occurs when
Mark only one oval.
Optimal substructure
Overlapping sub problems
Both optimal substructure and overlapping sub problems
Greedy approach

10.	problems, the strategy is called
	Mark only one oval.
	Dynamic programmingGreedyDivide and conquerRecursion
11.	3. In dynamic programming, the technique of storing the previously calculated values is called
	Mark only one oval.
	Saving value property
	Storing value property
	Memorization Mapping
12.	4. When a top-down approach of dynamic programming is applied to a problem, it
	usually
	Mark only one oval.
	Decreases both, the time complexity and the space complexity
	Increases the time complexity and decreases the space complexity
	Decreases the time complexity and increases the space complexity
	Increases both, the time complexity and the space complexity

13.	5. Which of the following problems should be solved using dynamic programming?
	Mark only one oval.
	Merge sort
	Binary search
	Longest common subsequence
	Quicksort
14.	6. The O/1 Knapsack problem is an example of
	Mark only one oval.
	Greedy algorithm
	1D dynamic programming
	2D dynamic programming
	Divide and conquer
15.	7. You are given a knapsack that can carry a maximum weight of 60. There are 4 items with weights {20, 30, 40, 70} and values {70, 80, 90, 200}. What is the maximum value of the items you can carry using the knapsack?
	Mark only one oval.
	200
	<u></u>
	<u> </u>
	90

16.	8. Consider the two matrices P and Q which are 10 x 20 and 20 x 30 matrices respectively. What is the number of multiplications required to multiply the two matrices?
	Mark only one oval.
	10 X 20
	20 X 30
	10 X 20 X 30
	10 X 30
17.	9. Which of the problems cannot be solved by backtracking method?
	Mark only one oval.
	n-queen problem
	Subset sum problem
	Travelling salesman problem
	Hamiltonian circuit problem
18.	10. What happens when the backtracking algorithm reaches a complete solution?
	Mark only one oval.
	It backtracks to the root
	It traverses from a different route
	It continues searching for other possible solutions
	Recursively traverses through the same route

19.	11. Recursively traverses through the same route
	Mark only one oval.
	Twice around the tree
	Breadth-first search
	Depth-first search
	Nearest neighbor first
0.0	
20.	12. Which one of the following is an application of the backtracking algorithm?
	Mark only one oval.
	Finding the shortest path
	Finding the efficient quantity to shop
	Crossword
	Ludo
21.	13. Which of the following logical programming languages is not based on backtracking?
	Mark only one oval.
	lcon
	Prolog
	Fortran
	Planner

22.	14. The problem of finding a subset of positive integers whose sum is equal to a given positive integer is called as?
	Mark only one oval.
	n- queen problem
	Knapsack problem
	Subset sum problem
	Hamiltonian circuit problem
23.	15. The problem of placing n queens in a chessboard such that no two queens attack each other is called as?
	Mark only one oval.
	Four queens puzzle
	Eight queens puzzle
	n-queen problem
	1-queen problem
24.	16. For how many queens was the extended version of Eight Queen Puzzle applicable for n X n squares?
	Mark only one oval.
	5
	<u>6</u>
	n
	8

25.	17. How many solutions are there for 8 queens on 8 X 8 board?
	Mark only one oval.
	12
	91
	92
	93
26.	18. How many fundamental solutions are there for the eight queen puzzle?
	Mark only one oval.
	92
	10
	12
	11
27.	19. Of the following given options, which one of the following does not provides an optimal solution for 8-queens problem?
	Mark only one oval.
	5,3,8,4,7,1,6,2
	4,1,5,8,6,3,7,2
	1,6,3,8,3,2,4,7
	6,2,7,1,4,8,5,3

28.	20. How many possible solutions occur for a 10-queen problem?
	Mark only one oval.
	<u>850</u>
	742
	724
	842
29.	21. Of the following given options, which one of the following is a correct option that provides an optimal solution for 4-queens problem?
	Mark only one oval.
	2,3,1,4
	4,3,2,1
	3,1,4,2
	4,2,3,1
30.	22. Which of the following methods can be used to solve n-queen's problem?
	Mark only one oval.
	Greedy algorithm
	Divide and conquer
	Backtracking
	Iterative improvement

31.	23. In n-queen problem, how many values of n does not provide an optimal solution?
	Mark only one oval.
	1
	<u>3</u>
	2
	4
32.	24. In how many directions do queens attack each other?
	Mark only one oval.
	1
	2
	3
	4
33.	25. Given items as {value,weight} pairs {{60,20},{50,25},{20,5}}. The capacity of knapsack=40. Find the maximum value output assuming items to be divisible and non-divisible respectively.
	Mark only one oval.
	100, 80
	110, 70
	110, 80
	130, 110

34.	26. The main time taking step in fractional knapsack problem is
	Mark only one oval.
	Breaking items into fraction Adding items into knapsack Sorting Looping through sorted items
35.	27. Given items as {value,weight} pairs {{40,20},{30,10},{20,5}}. The capacity of knapsack=20. Find the maximum value output assuming items to be divisible.
	Mark only one oval.
	80 60 100 40
36.	28. What is the objective of the knapsack problem? Mark only one oval. To get minimum total value in the knapsack To get maximum weight in the knapsack To get maximum total value in the knapsack To get minimum weight in the knapsack

37.	29. Fractional knapsack problem is also known as
	Mark only one oval.
	0/1 knapsack problem
	Divisible knapsack problem
	Continuous knapsack problem
	Non continuous knapsack problem
38.	30. Which bit is reserved as a parity bit in an ASCII set?
	Mark only one oval.
	First
	Seventh
	Eighth
	Tenth
39.	31. What is the running time of the Huffman encoding algorithm?
	Mark only one oval.
	O(C)
	O(log C)
	O(C log C)
	O(N log C)

40.	32. Recurrence equation formed for the tower of hanoi problem is given by
	Mark only one oval.
	T(n) = 2T(n-1)+n
	T(n) = 2T(n/2)+c
	T(n) = 2T(n-1)+c
	T(n) = 2T(n/2)+n
41.	33. Recursive solution of tower of hanoi problem is an example of which of the following algorithm?
	Mark only one oval.
	Dynamic programming
	Backtracking
	Divide and conquer
	Greedy algorithm
42.	34. Under what case of Master's theorem will the recurrence relation of merge sort fall?
	Mark only one oval.
	1
	3
	2
	It cannot be solved using master's theorem

43.	35. What is the condition for proper coloring of a graph?
	Mark only one oval.
	two vertices having a common edge should always have same color
	all vertices should have a different color
	two vertices having a common edge should not have same color
	all vertices should have same color
44.	36. The number of colors used by a proper coloring graph is called?
	Mark only one oval.
	x coloring graph
	m coloring graph
	k coloring graph
	n coloring graph
45.	37. What will be the chromatic number for an empty graph having n vertices?
	Mark only one oval.
	0
	2
	1
	\bigcap n

46.	38. What will be the chromatic number for a line graph having n vertices?
	Mark only one oval.
	0
	1
	n
	2
47.	39. Which algorithm is used to solve a minimum cut algorithm?
	Mark only one oval.
	Gale-Shapley algorithm
	Ford-Fulkerson algorithm
	Stoer-Wagner algorithm
	Prim's algorithm
48.	40 separates a particular pair of vertices in a graph.
	Mark only one oval.
	line
	arc
	cut
	flow

49.	41 is a data structure used to collect a system of cuts for solving min- cut problem
	Mark only one oval.
	Gomory-Hu graph
	Dancing tree
	Gomory-Hu tree
	AA tree
50.	42. Which algorithm is used to solve a maximum flow problem?
	Mark only one oval.
	Prim's algorithm
	Kruskal's algorithm
	Ford-Fulkerson algorithm
	Dijkstra's algorithm
5 1	40. The Great stars in the construction about the construction in 2
51.	43. The first step in the naïve greedy algorithm is?
	Mark only one oval.
	calculating the maximum flow using trial and error
	adding flows with higher values
	Analyzing the zero flow
	reversing flow if required

52.	44. A simple acyclic path between source and sink which pass through only positive weighted edges is called?
	Mark only one oval.
	residual path
	critical path
	Augmenting path
	maximum path
53.	45. Dijkstra's Algorithm is used to solve problems.
	Mark only one oval.
	All pair shortest path
	Network flow
	Single source shortest path
	Sorting
54.	46. Which of the following is the most commonly used data structure for implementing Dijkstra's Algorithm?
	Mark only one oval.
	Max priority queue
	Stack
	Min priority queue
	Circular queue

55.	47. How many priority queue operations are involved in Dijkstra's Algorithm?
	Mark only one oval.
	1
	2
	3
	4
56.	48. The maximum number of times the decrease key operation performed in Dijkstra's algorithm will be equal to
	Mark only one oval.
	Total number of vertices
	Number of vertices – 1
	Total number of edges
	Number of edges – 1
57.	49. What is running time of Dijkstra's algorithm using Binary min- heap method?
	Mark only one oval.
	O(V)
	O(VlogV)
	O(ElogV)
	O(E)

Mark only one oval. All pair shortest path Sorting Network flow quick sort 59. 51. What is the basic principle behind Bellmann Ford Algorithm? Mark only one oval. Interpolation Extrapolation Relaxation Regression 60. 52. Bellmann Ford Algorithm is an example for Mark only one oval.	or problems.
Sorting Network flow quick sort 59. 51. What is the basic principle behind Bellmann Ford Algorithm? Mark only one oval. Interpolation Extrapolation Relaxation Regression 60. 52. Bellmann Ford Algorithm is an example for	
Mark only one oval. Interpolation Extrapolation Relaxation Regression 60. 52. Bellmann Ford Algorithm is an example for	
	Ford Algorithm?
Greedy Algorithms Linear Programming Dynamic Programming Branch and Bound	

61.	53. Floyd Warshall's Algorithm can be applied on
	Mark only one oval.
	Undirected and unweighted graphs
	Undirected graphs
	Directed graphs
	Acyclic graphs
62.	54. Floyd Warshall Algorithm can be used for finding
	Mark only one oval.
	Single source shortest path
	Topological sort
	Transitive closure
	Minimum spanning tree
63.	55. What procedure is being followed in Floyd Warshall Algorithm?
	Mark only one oval.
	Top down
	Big bang
	Bottom up
	Sandwich

64.	56. The travelling salesman problem can be solved using
	Mark only one oval.
	A spanning tree
	Bellman – Ford algorithm
	A minimum spanning tree
	DFS traversal
65.	57. Kruskal's algorithm is used to
	Mark only one oval.
	find single source shortest path
	find all pair shortest path algorithm
	find minimum spanning tree
	traverse the graph
66.	58. When dynamic programming is applied to a problem, it takes far less time as compared to other methods that don't take advantage of overlapping sub problems.
	Mark only one oval.
	True
	False
	All of these
	None of these

67.	59. Time Complexity of DFS is? (V – number of vertices, E – number of edges)
	Mark only one oval.
	O(V + E)
	O(V)
	O(E)
	None of the mentioned
68.	60. A person wants to visit some places. He starts from a vertex and then wants to visit every vertex till it finishes from one vertex, backtracks and then explore other vertex from same vertex. What algorithm he should use?
	Mark only one oval.
	Breadth First Search
	Trim's algorithm
	Depth First Search
	None of the mentioned
69.	61. Branch and bound is a
	Mark only one oval.
	Data structure
	Sorting algorithm
	Problem solving technique
	Type of tree

70.	62. What will be the number of passes to sort the elements using insertion sort? 14, 12,16, 6, 3, 10
	Mark only one oval.
71.	63. What is an in-place sorting algorithm?
	Mark only one oval.
	The input is already sorted and in-place
	It requires additional storage
	It needs O(1) or O(logn) memory to create auxiliary locations
	None of the mentioned
72.	64. What is an external sorting algorithm?
	Mark only one oval.
	Algorithm that uses main memory during the sort
	Algorithm that involves swapping
	Algorithm that uses tape or disk during the sort
	Algorithm that are considered 'in place

73.	65. What is the time complexity of Dijikastra's algorithm
	Mark only one oval.
	O(N)
	O(N)^3
	O(N)^2
	O(logN)
74.	66. What is the time complexity of the above dynamic programming implementation of the matrix chain problem?
	Mark only one oval.
	O (1)
	O(n)
	O(n)^2
	O(n)^3
75.	67. Time complexity of fractional knapsack problem is
	Mark only one oval.
	O(n log n)
	O(n)
	O(nW)
	O(n)^2

76.	68. How many bits are needed for standard encoding if the size of the character set is X?
	Mark only one oval.
	Olog X
	X+1
	2X
	X^2
77.	69. What is the running time of Bellmann Ford Algorithm?
	Mark only one oval.
	O(V)
	O(V)^2
	O(ElogV)
	o(VE)
78.	70. How many passes does an insertion sort algorithm consist of?
	Mark only one oval.
	\bigcirc N
	N+1
	N-1
	○ N^2

This content is neither created nor endorsed by Google.

Google Forms