Online Examinations (Even Sem/Part-I/Part-II Examinations 2020 - 2021

Course Name - -Formal Language and Automata Course Code - BCSE404

*	You	can	submi	it the	form	ONLY	ONCE.

* F	ill th	ne fo	llowina	inforr	nation	for	further	process.
-----	--------	-------	---------	--------	--------	-----	---------	----------

44.	_						
*	H	Δ	a	ш	ır	Δ.	n
	ıv	C	u	u	ш,	C	u

1.	Email *
2.	Name of the Student *
3.	Enter Full Student Code *
4.	Enter Roll No *
5.	Enter Registration No *
6.	Enter Course Code *

7. Enter Course Name *

8.

Mark only one oval.		
Diploma in Pharmacy		
Bachelor of Pharmacy		
B.TECH.(CSE)		
B.TECH.(ECE)		
BCA		
B.SC.(CS)		
B.SC.(BT)		
B.SC.(ANCS)		
B.SC.(HN)		
B.Sc.(MM)		
B.A.(MW)		
BBA		
B.COM		
B.A.(JMC)		
BBA(HM)		
BBA(LLB)		
B.OPTOMETRY		
B.SC.(MB)		
B.SC.(MLT)		
B.SC.(MRIT)		
B.SC.(PA)		
LLB		
B.SC(IT)-AI		
B.SC.(MSJ)		
Bachelor of Physiotherapy		
B.SC.(AM)		
Dip.CSE		
Dip.ECE		
<u>DIP.EE</u>		
DIPCE		

9.

	· · · · · · · · · · · · · · · · · · ·	Crimic Examinations	(Even och // art-//	i ait-ii Examinati	0113 2020 - 2
	DIP.ME				
	PGDHM				
	MBA				
	M.SC.(BT)				
	M.TECH(CSE)				
	LLM				
	M.A.(JMC)				
	M.A.(ENG)				
	M.SC.(MATH)				
	M.SC.(MB)				
	MCA				
	M.SC.(MSJ)				
	M.SC.(AM)				
	M.SC.CS)				
	M.SC.(ANCS)				
	M.SC.(MM)				
	B.A.(Eng)				
An	swer all the questions. I	Each question	carry one r	nark.	
•	1. There are tu	ples in finite s	tate machin	е	
	Mark only one oval.				
	4				
	6				
	<u> </u>				
	Unlimited				

10. 2. Transition function	n maps
--	--------

Mark only one oval.

- Σ * Q -> Σ
- $Q * Q \rightarrow \Sigma$
- Q * Σ -> Q
- $\Sigma * \Sigma -> Q$
- 3. Language of finite automata is 11.

Mark only one oval.

- Type 0
- Type 1
- Type 3
- Type 2
- 4. Number of final state require to accept Φ in minimal finite automata 12.

Mark only one oval.

- 3None of these
- 3

13.	5. Regular expression for all strings starts with ab and ends with bba is
	Mark only one oval.
	aba*b*bba
	ab(ab)*bba
	ab(a+b)*bba
	All of these
14.	6. Number of states require to simulate a computer with memory capable of storing '3' words each of length '8'
	Mark only one oval.
	3*2^8
	2^(3+8)
	2^(3*8)
	None of these
15.	7. A regular language over an alphabet a is one that can be obtained from
	Mark only one oval.
	union
	concatenation
	All of these
	kleene

16.	8. Regular expression (0,1) is equivalent to
	Mark only one oval.
	0 U 1
	0/1
	All of these
	0 + 1
17.	9. Push down automata accepts which language9. Disjoint set data structure is used in
	Mark only one oval.
	Context sensitive language
	Recursive language
	Context free language
	None of these
18.	10 It is less complex to prove the closure properties over regular languages using
	Mark only one oval.
	DFA
	PDA
	○ NFA
	Can't be said

19.	11. Which of the following is an application of Finite Automaton?
	Mark only one oval.
	Compiler Design Grammar Parsers
	All of these
	Text Search
20.	12. A PDA machine configuration (p, w, y) can be correctly represented as
	Mark only one oval.
	(unprocessed input, stack content, current state)
	(current state, stack content, unprocessed input)
	(current state, unprocessed input, stack content)
	None of these
21.	13. A language accepted by Deterministic Push down automata is closed under which of the following?
	Mark only one oval.
	Union
	both Complement and Union
	Complement
	None of these

22.	14. Every grammar in Chomsky Normal Form is:
	Mark only one oval.
	regular
	context sensitive
	context free
	All of these
23.	15. In which of the following, does the CNF conversion find its use?
	Mark only one oval.
	CYK Algorithm
	Bottom up parsing
	All of these
	Preprocessing step in some algorithms
24.	16. Which among the following can be an example of application of finite state machine(FSM)?
	Mark only one oval.
	Adder
	Stack
	Communication Link
	None of these

25.	17. Predict the number of transitions required to automate the following language using only 3 states:L= {w w ends with 00}				
	Mark only one oval.				
	2				
	3				
	cannot be said				
26.	18. L1= {w w does not contain the string tr }L2= {w w does contain the string tr}Given Σ = {t, r}, The difference of the minimum number of states required to form L1 and L2?				
	Mark only one oval.				
	1				
	2				
	cannot be said				
27.	19. In mealy machine, the O/P depends upon?				
	Mark only one oval.				
	State				
	Previous State				
	State and Input				
	Only Input				

28.	20. Which of the given are correct?
	Mark only one oval.
	Moore machine has 6-tuples
	Mealy machine has 6-tuples
	Both Mealy and Moore has 6-tuples
	None of these
29.	21. The major difference between Mealy and Moore machine is about:
	Mark only one oval.
	Input Variations
	Both Output Variations and Input Variations
	Output Variations
	None of these
0.0	
30.	22. RR* can be expressed in which of the forms:
	Mark only one oval.
	R-
	R+ U R-
	R+
	\bigcap R

31.	23. Which of the following is not a regular expression?
	Mark only one oval.
	[(a+b)*-(aa+bb)]* (01+11+10)* [(0+1)-(0b+a1)*(a+b)]* (1+2+0)*(1+2)*
32.	24. Which of the following is true?
	Mark only one oval.
	Every subset of a regular set is regular The union of two non regular set is not regular Every finite subset of non-regular set is regular Infinite union of finite set is regular
33.	25. The minimum number of states required in a DFA (along with a dumping state) to check whether the 3rd bit is 1 or not for n >=3 Mark only one oval.
	3 4 1 5

34.	26. Generate a regular expression for the given language: $L(x)$: $\{x\}\{0,1\}^* \mid x \text{ ends with } 1 \text{ nd does not contain a substring } 01\}$
	Mark only one oval.
	(0+01)*
	(0+01)*1
	(0+01)*(1+01)
	All of these
35.	27. The minimum number of transitions to pass to reach the final state as per the following regular expression is: {a,b}*{baaa}
	Mark only one oval.
	5
	<u> </u>
	4
	3
36.	28. While applying Pumping lemma over a language, we consider a string w that belong to L and fragment it into parts.
	Mark only one oval.
	2
	5
	3
	<u> </u>

3/.	29. A turing machine is a
	Mark only one oval.
	real machine abstract machine
	more than one option is correct
	hypothetical machine
38.	30. Which of the following is false for an abstract machine?
	Mark only one oval.
	Turing machine
	theoretical model of computer
	All of them
	assumes a discrete time paradigm
39.	31. The context free languages are closed under:
	Mark only one oval.
	Intersection
	Complement
	Kleene
	None of these

40.	32. Given Grammar G1:S->aSbS->eGrammar G2:R->cRdR->elf L(G)=L(G1) U L(G2), the number of productions the new starting variable would have:
	Mark only one oval.
	3
	4
	2
41.	33. If L1 and L2 are context free languages, L1-L2 are context free:
	Mark only one oval.
	always
	sometimes
	never
	none of the mentioned
42.	34. Let T={p, q, r, s, t}. The number of strings in S* of length 4 such that no symbols can be repeated.
	Mark only one oval.
	120
	360
	625
	36

43.	35. A is context free grammar with atmost one non terminal in the right
	handside of the production.
	Mark only one oval.
	linear bounded grammar
	regular grammar
	linear grammar
	none of the mentioned
44.	36. Which of the following relates to Chomsky hierarchy?
	Mark only one oval.
	○ CFL
	CSL
	Regular
	None of the mentioned
45.	37. Which of the following statement is false in context of tree terminology?
	Mark only one oval.
	A node can have three children
	Root has no parent
	Root with no children is called a leaf
	Trees are collection of nodes, with a parent child relationship

46.	38. Which among the following is the root of the parse tree?
	Mark only one oval.
	Production P Terminal T Starting Variable S
	Variable V
47.	39. In which order are the children of any node ordered?
	Mark only one oval.
	From the right
	Arbitrarily
	From the left
	None of the mentioned
48.	40. A CFG is not closed under
	Mark only one oval.
	Dot operation
	Union Operation
	Iteration
	Concatenation

49.	41. Which of the following are distinct to parse trees?
	Mark only one oval.
	abstract parse trees
	sentence diagrams
	both abstract parse trees and sentence diagrams
	none of the mentioned
50.	42. A symbol X is called to be useful if and only if its is:
	Mark only one oval.
	generating
	reachable
	both generating and reachable
	none of the mentioned
51.	43. Grammar is checked by which component of compiler
	Mark only one oval.
	Scanner
	Parser
	Semantic Analyzer
	None of the mentioned

52.	start state with an empty stack?
	Mark only one oval.
	process the whole string
	end in final state
	all of the mentioned
	end with an empty stack
53.	45. The following denotion belongs to which type of language: G=(V, T, P, S)
	Mark only one oval.
	Regular grammar
	Context Sensitive grammar
	Context free grammar
	All of the mentioned
54.	46.Which of the following regular expression allows strings on {a,b}* with length n
04.	where n is a multiple of 4.
	Mark only one oval.
	(a+b+ab+ba+aa+bb+aba+bab+baba)*
	(bbbb+aaaa)*
	((a+b)(a+b)(a+b))*
	None of the mentioned

55.	47. Which of the following is incorrect? There exists algorithms to decide if:
	Mark only one oval.
	String w is in CFL L CFL L is empty All of the mentioned CFL L is infinite
56.	48. Fill in the blank with the most appropriate option. Statement: In theory of computation, abstract machines are often used in regarding computability or to analyze the complexity of an algorithm.
	Mark only one oval.
	thought experiments principle all of the mentioned hypothesis
57.	49. Which of the problems were not answered when the turing machine was invented?
	Mark only one oval.
	Does a machine exists that can determine whether any arbitrary machine on its tape is circular
	Does a machine exists that can determine whether any arbitrary machine on its tape is ever prints a symbol
	None of the mentioned
	Hilbert Entscheidungs problem

58.	50. Which of the following statements is not true?
	Mark only one oval.
	Every language defined by any of the automata is also defined by a regular expression
	Every language defined by a regular expression can be represented using NFA with e moves
	Every language defined by a regular expression can be represented using a DFA
	Regular expression is just another representation for any automata definition
59.	51. All the regular languages can have one or more of the following descriptions: i) DFA ii) NFA iii) e-NFA iv) Regular Expressions Which of the following are correct?
	Mark only one oval.
	i, ii, iv
	i, ii, iii
	i, ii, iii, iv
	i, iv
60.	52. The basic limitation of finite automata is that
	Mark only one oval.
	It sometimes recognize grammar that are not regular.
	It sometimes fails to recognize regular grammar
	It can't remember arbitrary large amount of information.
	All of the mentioned

61.	53. L1= {w w does not contain the string tr } L2= {w w does contain the string tr} Given Σ = {t, r}, The difference of the minimum number of states required to form L1 and L2?
	Mark only one oval.
	3
	2
	O
	1
62.	54. Which among the following is not an application of FSM?
	Mark only one oval.
	Lexical Analyser
	BOT
	None of the mentioned
	State charts
63.	55. Regular expression Φ* is equivalent to
	Mark only one oval.
	Φ
	O
	\bigcirc ϵ
	1

64.	56. Design a NFA for the language: L: {an n is even or divisible by 3} Which of the following methods can be used to simulate the same.
	Mark only one oval.
	a) e-NFA
	b) Power Construction Method
	Both (a) and (b)
	None of the mentioned
65.	57. Which of the following is true for a predictive parser?
	Mark only one oval.
	Recursive Descent parser
	ono backtracking
	Recursive Descent parser and no backtracking
	None of the mentioned
66.	58. The total number of states to build the given language using DFA: L= {w w has exactly 2 a's and at least 2 b's}
	Mark only one oval.
	11
	12
	13
	10

67.	59. Statement 1: Null string is accepted in Moore Machine. Statement 2: There are more than 5-Tuples in the definition of Moore Machine.
	Mark only one oval.
	Statement 1 is true while Statement 2 is false
	Statement 1 is false while Statement 2 is true
	Statement 1 is true and Statement 2 is true
	Statement 1 and Statement 2, both are false
68.	60. Which one among the following is true? A mealy machine
	Mark only one oval.
	produces a language
	produces a grammar
	has less circuit delays
	can be converted to NFA
69.	61. Number of states require to simulate a computer with memory capable of storing '3' words each of length '8'.
	Mark only one oval.
	3 * 28
	2(3+8)
	2(3*8)
	None of the mentioned

70.	62. Generate a regular expression for the following problem statement: Password Validation: String should be 8-15 characters long. String must contain a number, an Uppercase letter and a Lower case letter.
	Mark only one oval.
	^(?=.*[a-z])(?=.*[A-Z])(?=.*\d).{9,16}\$ ^(?=.[a-z])(?=.[A-Z])(?=.\d).{8,15}\$ ^(?=.*[a-z])(?=.*[A-Z])(?=.*\d).{8,15}\$ None of the mentioned
71.	63. The of a set of states, P, of an NFA is defined as the set of states reachable from any state in P following e-transitions.
	Mark only one oval.
	e-pack Q in the tuple e-closure None of the mentioned
70	(4 Mbatic
72.	64. What is wrong in the given definition? Def: ({q0, q1, q2}, {0,1}, δ, q3, {q3}) Mark only one oval.
	The definition does not satisfy 5 Tuple definition of NFA
	There are no transition definition
	Initial and Final states do not belong to the Graph
	Initial and final states can't be same

73.	65. What is the relation between DFA and NFA on the basis of computational power?
	Mark only one oval.
	DFA > NFA
	NFA > DFA
	Equal
	Can't be said
74.	66. How many strings of length less than 4 contains the language described by the regular expression $(x+y)*y(a+ab)*?$
	Mark only one oval.
	7
	10
	12
	11
75.	67. Suppose A->xBz and B->y, then the simplified grammar would be:
	Mark only one oval.
	A->xyzA->xBz xyz
	A->xBz B y
	A->xyz
	none of the mentioned

76.	68. Given Grammar: S->A, A->aA, A->e, B->bA Which among the following productions are Useless productions?
	Mark only one oval.
	S->A
	A->aA
	B->bA
	A->e
77.	69. Given grammar G: S->aS A C A->a B->aa C->aCb Find the set of variables thet can produce strings only with the set of terminals.
	Mark only one oval.
	(C)
	(A,B)
	(A,B,S)
	None of the mentioned
78.	70. Given a Grammar G: S->aA A->a A->B B->A B->bb Which among the following will be the simplified grammar?
	Mark only one oval.
	S->aA aB, A->B, B->bb
	S->aA aB, A->a, B->A
	S->aA aB, A->a, B->bb
	None of the emntioned

This content is neither created nor endorsed by Google.

Google Forms