Online Examinations (Even Sem/Part-I/Part-II Examinations 2020 - 2021

Course Name - - Control Systems Course Code - PCCEC601

* You can submit the	form ONLY ONCE.
----------------------	-----------------

- * Fill the following information for further process.
- * Required

1.	Email *
2.	Name of the Student *
3.	Enter Full Student Code *
4.	Enter Roll No *
5.	Enter Registration No *
6.	Enter Course Code *

7. Enter Course Name *

8.

Mark only one oval.
Diploma in Pharmacy
Bachelor of Pharmacy
B.TECH.(CSE)
B.TECH.(ECE)
BCA
B.SC.(CS)
B.SC.(BT)
B.SC.(ANCS)
B.SC.(HN)
B.Sc.(MM)
B.A.(MW)
BBA
<u>B.COM</u>
B.A.(JMC)
BBA(HM)
BBA(LLB)
B.OPTOMETRY
B.SC.(MB)
B.SC.(MLT)
B.SC.(MRIT)
B.SC.(PA)
LLB
B.SC(IT)-AI
B.SC.(MSJ)
Bachelor of Physiotherapy
B.SC.(AM)
Dip.CSE
Dip.ECE
<u>DIP.EE</u>
DIPCE

DIP.ME	
PGDHM	
MBA	
M.SC.(BT)	
M.TECH(CSE)	
LLM	
M.A.(JMC)	
M.A.(ENG)	
M.SC.(MATH)	
M.SC.(MB)	
MCA	
M.SC.(MSJ)	
M.SC.(AM)	
M.SC.CS)	
M.SC.(ANCS)	
M.SC.(MM)	
B.A.(Eng)	

Answer all the questions. Each question carry one mark.

9. 1.

If the transfer function of the system is given by T(s)=G1G2+G2G3/1+X. Then X is:

10. 2.

The transfer function from D(s) to Y(s) is :

Mark only one oval.

- 2/3s+7
- 2/3s+1
- 6/3s+7
- 2/3s+6

11. 3.

- -9/5
- -6/5
- 6/5
- 9/5

12. 4.

Mark only one oval.

- abd/1-(ac)
- abdeg/1-(bc+ef)+bcef
- abd/1-(bc+ef)+bcef
- adcdef/1-(bc+ef)+bcef

13. 5.

- G1/1+G2H
- G1+G2/1+G1H
- G2/1+G1H
- None of the mentioned.

14. 6.

Mark only one oval.

- 2,3
- 2,2
- 3,3
- None of the mentioned.
- 15. 7.A tachometer is added to servomechanism because:

Mark only one oval.

- It is easily adjustable
- It can adjust damping
- It reduces steady state error
- It converts velocity of the shaft to a proportional Dc voltage
- 16. 8. Backlash in a stable control system may cause:

- Onder damping
- Over damping
- High level oscillations
- Low level oscillations

17.	9. Which of the following is not the feature of modern control system?
	Mark only one oval.
	Quick response
	Accuracy
	Correct power level
	No oscillation
18.	10. The principle of homogeneity and superposition are applied to:
	Mark only one oval.
	Linear time invariant systems
	Nonlinear time invariant systems
	Linear time variant systems
	Nonlinear time variant systems
19.	11.When deriving the transfer function of a linear element
	Mark only one oval.
	Both initial conditions and loading are taken into account
	Initial conditions are taken into account but the element is assumed to be not loaded
	Initial conditions are assumed to be zero but loading is taken into account
	Initial conditions are assumed to be zero and the element is assumed to be not loaded

20.	12. If the initial conditions for a system are inherently zero, what does it physically mean?
	Mark only one oval.
	The system is at rest but stores energy
	The system is working but does not store energy
	The system is at rest or no energy is stored in any of its part
	The system is working with zero reference input
21.	13. The overall transfer function from block diagram reduction for cascaded blocks is :
	Mark only one oval.
	Sum of individual gain
	Product of individual gain
	Difference of individual gain
	Division of individual gain
22.	14. Transfer function of the system is defined as the ratio of Laplace output to
	Laplace input considering initial conditions
	Mark only one oval.
	1
	2
	O
	Infinite

23.	15. Loop which do not possess any common node are said to be	loops.
	Mark only one oval.	
	Forward gain	
	Touching loops	
	Non touching loops	
	Feedback gain	
24.	16. Signal flow graphs:	
	Mark only one oval.	
	They apply to linear systems	
	The equation obtained may or may not be in the form of cause or effect	
	Arrows are not important in the graph	
	They cannot be converted back to block diagram	
0.5		
25.	17. Benefits of feedback:	
	Mark only one oval.	
	Performance of system is greater.	
	Need for system much larger path gain and system instability.	
	Controlled variable accurately follows the desired value	
	Affected by parameter variations	

26.	18. Multiple signals as input can be used in which systems:
	Mark only one oval.
	Feedback systems
	Non feedback systems
	Feedforward systems
	None of the mentioned
27.	19.Standard test signals in control system are:
27.	·
	Mark only one oval.
	Impulse signal
	Ramp signal
	Unit step signal
	All of the mentioned
28.	20.Ramp input :
	Mark only one oval.
	Denotes constant velocity
	Value increases linearly with time
	It denotes constant velocity and varies linearly with time
	It varies exponentially with time
	•

29.	21. The transfer function of the system is G(s) =100/(s+1) (s+100). For a unit step input to the system the approximate settling time for 2% criterion is:
	Mark only one oval.
	100 sec
	4 sec
	1 sec
	0.01 sec
30.	. 22. Laplace transform of unit impulse signal is :
	Mark only one oval.
	A/s
	\bigcirc A
	1
	1/s
31.	. 23. The damping ratio and peak overshoot are measures of:
	Mark only one oval.
	Relative stability
	Speed of response
	Steady state error
	Absolute stability

32.	24. Which one of the following is the most likely reason for large overshoot in a control system?
	Mark only one oval.
	High gain in a system
	Presence of dead time delay in a system
	High positive correcting torque
	High retarding torque
33.	25. The output of a feedback control system must be a function of
	Mark only one oval.
	Reference and output
	Reference and input
	Input and feedback signal
	Output and feedback signal
34.	26. The effect of adding feedback makes the system
	Mark only one oval.
	Linear
	Non-linear
	Time variant
	Time invariant

35.	27. In a control system the output of the controller is given to
	Mark only one oval.
	Final control element
	Amplifier
	Comparator
	Sensor
36.	28. The system in originally critically damped if the gain is doubled the system will be :
	Mark only one oval.
	Remains same
	Overdamped
	Under damped
	Undamped
37.	29. For the system 2/s+1, the approximate time taken for a step response to reach 98% of its final value is:
	Mark only one oval.
	1s
	2s
	4s
	8s

38.	30. The maximum overshoot is:
	Mark only one oval.
	To measure the relative stability
	A system with large overshoot is desirable
	It occurs at second overshoot
	A system with large overshoot is desirable & It occurs at second overshoot
39.	31. For critically damped second order system, if the gain constant(K) is increased, the system behavior
	Mark only one oval.
	Becomes oscillatory
	Becomes under damped
	Becomes over damped
	Shows no change
40.	32. Which principle does the linear system follow?
	Mark only one oval.
	Principle of energy conservation
	Principle of mass conservation
	Principle of electromagnetism
	Principle of superposition

41.	33 control systems have unpredictable & non-repeatable.	
	Mark only one oval.	
	Static	
	Dynamic	
	Deterministic	
	Stochastic	
42.	34. On what difference does the pneumatic system works?	
	Mark only one oval.	
	Speed	
	Pressure	
	Area	
	Length	
43.	35. How many parameters does process control refer to?	
	Mark only one oval.	
	1	
	3	
	<u> </u>	
	7	

44.	36. In a temperature control system, what conversion in signal takes place?
	Mark only one oval.
	Digital to Analog
	Analog to Digital
	Error to Digital
	Error to Analog
45.	37. In a second order feedback control system natural frequency and damping
	Mark only one oval.
	In a second order feedback control system natural frequency and damping
	Cannot be designed by changing the gain of the individual system
	Are independent on the type of input excitation
	None of the mentioned
46.	38. Normalized response of a dynamic system refers to:
	Mark only one oval.
	Characteristic feature of a response due to specific excitation irrespective of its amplitude
	Response of dynamic system divided by its maximum value
	Response of dynamic system divided by a standard value
	None of the mentioned

4/.	39. A linear time invariant system is stable if :	
	Mark only one oval.	
	System in excited by the bounded input, the output is also bounded	
	In the absence of input output tends zero	
	System in excited by the bounded input, the output is also bounded & In the absence of input output tends zero	
	System in excited by the bounded input, the output is not bounded	
48.	40. Stability of a system implies that :	
	Mark only one oval.	
	Small changes in the system input does not result in large change in system output	
	Small changes in the system parameters does not result in large change in system output	
	Small changes in the initial conditions does not result in large change in system output	
	All of the above mentioned	
49.	41. Roots with higher multiplicity on the imaginary axis makes the system :	
	Mark only one oval.	
	Absolutely stable	
	Unstable	
	Linear	
	Stable	

50.	50. 42. If the roots of the have negative real parts then the response is	
	Mark only one oval.	
	Stable	
	Unstable	
	Marginally stable	
	Bounded	
51.	43. The stability of the linear system:	
	Mark only one oval.	
	Determined by the location of the poles	
	Dependent entirely of whether or the system is driven	
	The stability of the undriven linear system is dependent on the magnitude of the final initial state.	
	Stability cannot be determined by the open loop poles	
52.	44.The necessary condition of stability are:	
	Mark only one oval.	
	Coefficient of characteristic equation must be real and have the same sign	
	Coefficient of characteristic equation must be non-zero	
	Coefficient of characteristic equation must be real and have the same sign & Coefficient of characteristic equation must be non-zero	
	Coefficient of characteristic equation must be zero	

53.	45. Routh Hurwitz criterion gives:
	Mark only one oval.
	Number of roots in the right half of the s-plane Value of the roots
	Number of roots in the left half of the s-plane
	Number of roots in the top half of the s-plane
54.	46. Consider the following statement regarding Routh Hurwitz criterion:
	Mark only one oval.
	It gives absolute stability
	It gives gain and phase margin
	It gives the number of roots lying in RHS of the s-plane
	It gives gain, phase margin and number of roots lying in RHS of the s-plane
55.	47. The characteristic equation of a system is given as s3+25s2+10s+50=0. What is the number of the roots in the right half s-plane and the imaginary axis respectively?
	Mark only one oval.
	1,1
	0,0
	2,1
	1,2

56.	48. The necessary condition for the stability of the linear system is that all the coefficients of characteristic equation 1+G(s)H(s) =0, be real and have the :	
	Mark only one oval.	
	Positive sign	
	Negative sign	
	Same sign	
	Both positive and negative	
57.	49.A system with unity feedback having open loop transfer function as $G(s) = K(s+1)/s3+as2+2s+1$. What values of 'K' and 'a' should be chosen so that the system oscillates ?	
	Mark only one oval.	
	K =2, a =1	
	K =2, a =0.75	
	K =4, a =1	
	K =4, a =0.75	
58.	50. Determine the stability of closed loop control system whose characteristic equation is s5+s4+2s3+2s2+11s+10=0.	
	Mark only one oval.	
	Stable	
	Marginally stable	
	Unstable	
	None of the mentioned	

59.	51. Determine the value of K such that roots of characteristic equation given below lies to the left of the line $s = -1$. $s3+10s2+18s+K$.		
	Mark only one oval.		
	K>16 and K<9		
	K<16		
	9		
	K<9		
60.	52. The characteristic equation of a feedback control system is s3+Ks2+9s+18. When the system is marginally stable, the frequency of the sustained oscillation:		
	Mark only one oval.		
	1		
	1.414		
	1.732		
	3		
61.	53. The polynomial s4+Ks3+s2+s+1=0 the range of K for stability is		
	Mark only one oval.		
	K>5		
	-10		
	K>-4		
	K-1>0		

62.	54. Root locus of $s(s+2)+K(s+4)=0$ is a circle. What are the coordinates of the center of this circle?
	Mark only one oval.
	2,0
	-3,0
	-4,0
	5,0
63.	55. Number of roots of characteristic equation is equal to the number of
	Mark only one oval.
	Branches
	Root
	Stem
	Poles
64.	56. If root loci plots of a particular control system do not intersect the imaginary axis at any point, then the gain margin of the system will be
	Mark only one oval.
	o
	1
	0.707
	Infinite

65.	57. If the gain of the open loop system is doubled, the gain of the system is:
	Mark only one oval.
	Not affected
	Doubled
	Halved
	One fourth of the original value
66.	58. The gain margin in dBs of a unity feedback control system whose open loop
	transfer function, $G(s)$ $H(s) = 1/s(s+1)$ is
	Mark only one oval.
	0
	1
	1
	Infinite
67.	59. OLTF contains one zero in right half of s-plane then
	Mark only one oval.
	Open loop system is unstable
	Close loop system is unstable
	Close loop system is unstable for higher gain
	Close loop system is stable

68. 60. The critical value of gain for a system is 40 and gain margin is 6dB. The system is operating at a gain of:

Mark only one oval.

- <u>20</u>
- 40
- () 60
- 120
- 69. 61. Consider the following statements:

Mark only one oval.

- The effect of feedback is to reduce the system error
- Feedback increases the gain of the system in one frequency range but decreases in the other
- Feedback can cause a system originally stable to become unstable
- The effect of feedback is to reduce the system error & Feedback can cause a system originally stable to become unstable
- 70. 62. Write the transfer function of the network

- 1/(sCR+1)
- SCR+1
- 1/(s+CR)
- s+CR

71. 63.

Determine the zeros of given transfer function.

$$G(s) = \frac{s(s+2)(s+4)}{s(s+3)(s+4)}$$

Mark only one oval.

- s=0, -2, -4
- s=0, -1, -4
- s=0, -2, -3
- s= -2, -4
- 72. 64.

Determine the poles of given transfer function.

$$G(s) = \frac{s(s+2)(s+4)}{s(s+3)(s+4)}$$

- s=0, -3, -4
- s=0, -2, -4
- s=0, -1, -4
- s=-3, -4

73. 65. Write the poles of the given system

$$\frac{C(s)}{R(s)} = \frac{(s+2)}{s(s^2+2s+2)(s^2+7s+12)}$$

Mark only one oval.

- s=0, -3, -4, -1+j,-1-j
- s=0, -3, -4, -1+j
- s= -3, -4, -1+j,-1-j
- s=0, -3, -4

74. 66.

Consider a system with transfer function $G(s) = s+6/Ks^2+s+6$. Its damping ratio will be 0.5 when the values of k is:

Mark only one oval.

- 2/6
- 3
- 1/6
- <u>6</u>

75. 67.

Determine the centroid of the root locus for the system having $G(s) H(s) = K/(s+1)(s^2+4s+5)$

- -2.1
- -1.78
- -1.66
- -1.06

76	70
/n	೧ದ

The angles of asymptotes of the root loci of the equation s^3+5s^2+ (K+2) s+ K=0 are:

Mark only one oval.

- 0° and 270°
- 0° and 180°
- 90° and 270°
- 90° and 180°

77. 69.

The open loop transfer function of the feedback control system is given by

 $G(s) = K(s+3)/s(s+4)^2(s+5)(s+6)$. The number of asymptotes and the centroid of asymptotes of the root loci of closed loop system is

- 4 and (-4,0)
- 3 and (-12,0)
- -4 and (-4,0)
- -3 and (-12,0)

78. 70.

The characteristic equation the value of x is	n is s ³ +14s ² + (45+K) s+ K =0, centroid is located at (-x,0) ther
Mark only one oval.	
1	
2	
3	
4	

This content is neither created nor endorsed by Google.

Google Forms