Online Assessment (Special Examination) (Even Sem/Part-I/Part-II Examinations 2019 - 2020

Course Name -Discrete Mathematics Course Code -M201

- * You can submit the form ONLY ONCE.
- * Fill the following information for further process.
- * Required

1.	Email address *
2.	Name of the Student *
3.	Enter Full Student Code *
4.	Enter Roll No *
5.	Enter Registration No *

6.	Enter Course Code *
7.	Enter Course Name *

8.	Select Your Programme *
	Mark only one oval.
	Diploma in Pharmacy
	Bachelor of Pharmacy
	B.TECH.(CSE)
	B.TECH.(ECE)
	BCA
	B.SC.(CS)
	B.SC.(BT)
	B.SC.(ANCS)
	B.SC.(HN)
	B.Sc.(MM)
	B.A.(MW)
	BBA
	B.COM
	B.A.(JMC)
	BBA(HM)
	BBA(LLB)
	B.OPTOMETRY
	B.SC.(MB)
	B.SC.(MLT)
	B.SC.(MRIT)
	B.SC.(PA)
	LLB
	PGDHM
	Dip.CSE
	Dip.ECE
	Dip.EE
	Dip.CE
	Dip.ME
	MCA
	M.SC.(CS)

Mark only one oval.
injective function
surjective function
bijective function
None of these

10. 2. If X U {3,4} = {1,2,3,4,5,6} then which of the following is true?
Mark only one oval.
Smallest set X = {1,2,5,6}
Smallest set X = {1,2,3,4}
Smallest set X = {1,2,3,4}

Greatest set $X = \{1, 2, 3, 4\}$

3. Given the relation R={(a,b),(b,c)} in the set A={a,b,c} then the minimum number

of ordered pairs which added to R make it an equivalence relation is

11.

	Mark only one oval.
	5
	<u> </u>
	7
	8
12.	4. The negation of "All students live in dormitories" is
	Mark only one oval.
	All students do not live in dormitories.
	No student live in dormitories.
	One student does not live in dormitories.
	Some students do not live in dormitories.
13.	5. The number of three digit number that can be formed from the digits 1,3,5,7 is
	Mark only one oval.
	24
	<u> </u>
	4
	None of these

14.	6. In how many ways 7 different beads can be arranged to form a necklace?	
	Mark only one oval.	
	250	
	300	
	360	
	350	
15.	7. The number of words of 5 different letters that can be formed by taking 2 letters from the word BOX and 3 letters from the word TABLE is	
	Mark only one oval.	
	120	
	30	
	3600	
	None of these	
1.0		
16.	8. The number of numbers from 1 to 7 are chosen so that two of them will add upto 8 is	
	Mark only one oval.	
	3	
	4	
	<u> </u>	
	9	

17.	7. 9. What is multiplication of the sequence 1, 2, 3, 4, by the sequence 1, 3, 5, 7,11	
	Mark only one oval.	
	1, 5, 14, 30,	
	2, 8, 16, 35,	
	1, 4, 7, 9, 13,	
	4, 8, 9, 14, 28,	
18. 10. The possible number of vertices in a binary tree is		
	Mark only one oval.	
	4	
	<u> </u>	
	5	
	2	
19.	11. Every vertex of a null graph is	
	Mark only one oval.	
	Pendant	
	Isolated	
	Odd	
	None of these	

20.	0. 12. Choose the correct statement.	
	Mark only one oval.	
	every walk is a path	
	every circuit is a path	
	every loop is a circuit	
	The origin and the terminus of a walk are always same	
01	12. A complete group must be a	
21. 13. A complete graph must be a		
	Mark only one oval.	
	circuit	
	regular graph	
	non-simple graph	
	null-graph	
22.	14. A simple graph has	
	Mark only one oval.	
	no parallel edges	
	no loops	
	no parallel edges and no loops	
	no isolated vertex	

23.	15. A binary tree has exactly	
	Mark only one oval.	
	two vertices of degree 2	
	one vertex of degree 2	
	one vertex of degree 1	
	one vertex of degree 3	
24.	16. A tree always is a	
	Mark only one oval.	
	self complement graph	
	Euler graph	
	simple graph	
	Hamiltonian graph	
25.	17. A connected graph with 150 vertices and 149 edges is	
	Mark only one oval.	
	Not a minimally connected graph	
	Euler graph	
	Binary tree	
	Tree	

26.	18. Minimal spanning tree is found by		
	Mark only one oval.		
	Dijkstra's algorithm Ford-Fukerson's algorithm Floyd algorithm Kruskal's algorithm		
27.	19.		
	According to De-Morgan's law $[A \cup (B \cap C)]^c$ Mark only one oval.		
	$A^c \cap (B \cap C)$	$A^c \cap (B^c \cup C^c)$	
	Option 1	Option 2	
	$A^c \cup (B^c \cap C^c)$		
	Option 3	None of these	

28. 20.

If $f:A \to B$ where $B = \{0, 1, 4, 9\}$ and f is defined by the rule $f(x) = x^2$. For which set A is the one-to-one function *Mark only one oval*.

- {-1,0,1,2}
- (-3,-1,0,2,3)
- (-2,0,-1,2)
- None of these
- 29. 21. Let N be the set of natural numbers and R be the relation in N defined as $R = \{(a, b) : a = b 2, b > 6\}$. Then

Mark only one oval.

 $(2,4) \in \mathbb{R}$ $(8,7) \in \mathbb{R}$ 0 Option 2 $(3,8) \in \mathbb{R}$ $(6,8) \in \mathbb{R}$

Option 4

Option 3

30. 22.

If the matrix $\begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & \lambda \end{pmatrix}$ is singular then the value of λ is

Mark only one oval.

- () 3
- **5**
- <u>2</u>
- <u>4</u>

31. 23.

If
$$A = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$$
, then $A^2 + 7I =$

Mark only one oval.

- O
- _____2A
- () 3A
- () 5A

32. 24.

Negation of $\exists x \forall y, p(x, y)$ is

Mark only one oval.

$$\forall x \exists y, \neg p(x, y)$$

 $\exists x \exists y, \neg p(x, y)$

Option 1

Option 2

$$\forall x \forall y, p(x,y)$$

Option 3

None of these

33. 25. A graph G has a spanning tree iff G is

Mark only one oval.

- ____ regular
- connected
- simple
- () tree

34. 26.

If p:"anil is rich" and q:"kanchan is poor" then the symbolic from the statement "Either Anil or Kanchan is rich" is

Mark only one oval.

35. 27.

If
$$p \leftrightarrow q \equiv (p \rightarrow q) \land r$$
, then r is Mark only one oval.

- 36. 28. If a graph has 6 vertices and 15 edges then the size of its adjacency matrix is Mark only one oval.
 - () 6X6
 - ─ 6X15
 - _____ 15X6
 - _____ 15X15

37. 29.

$$p \lor (p \land q) \equiv$$

Mark only one oval.

38. 30. The root of a binary tree is the vertex having degree

Mark only one oval.

- _____2
- () 3
- <u>4</u>

This content is neither created nor endorsed by Google.

Google Forms