Online Assessment (Even Sem/Part-I/Part-II Examinations 2019 - 2020

Course Name - Design & Analysis of Algorithm Course Code - MCS201

- * You can submit the form ONLY ONCE.
- * Fill the following information for further process.
- * Required

1.	Email address *
2.	Name of the Student *
3.	Enter Full Student Code *
4.	Enter Roll No *
5.	Enter Registration No *
6.	Enter Course Code *

7. Enter Course Name *

8.	Select Your Programme *
	Mark only one oval.
	Diploma in Pharmacy
	Bachelor of Pharmacy
	B.TECH.(CSE)
	B.TECH.(ECE)
	BCA
	B.SC.(CS)
	B.SC.(BT)
	B.SC.(ANCS)
	B.SC.(HN)
	B.Sc.(MM)
	B.A.(MW)
	BBA
	B.COM
	B.A.(JMC)
	BBA(HM)
	BBA(LLB)
	B.OPTOMETRY
	B.SC.(MB)
	B.SC.(MLT)
	B.SC.(MRIT)
	B.SC.(PA)
	LLB
	PGDHM
	Dip.CSE
	Dip.ECE
	Dip.EE
	Dip.CE
	Dip.ME
	MCA
	M.SC.(CS)

	M.SC.(ANCS)
	M.SC.(MM)
	MBA
	M.SC.(BT)
	M.TECH(CSE)
	LLM
	M.A.(JMC)
	M.A.(ENG)
	M.SC.(MATH)
	M.SC.(MB)
A	nswer all the questions. Each question carry one mark.
9.	1. Two main measures for the efficiency of an algorithm are
	Mark only one oval.
	Processor and memory
	Complexity and capacity
	Time and space
	Data and space
10.	2. for $I = 1$ to n do begin sum = sum A[i]; if $i = 100$ then break; end the time complexity of the above algorithm is
	Mark only one oval.
	O(1)
	O(n)
	O (100)
	None of these

11.	3. The worst-case time complexity of Quick Sort is
	Mark only one oval.
	O(n^2)
	O(log n)
	O(n)
	O(n logn)
12.	4. Which of the following is not true about QuickSort?
	Mark only one oval.
	in-place algorithm
	pivot position can be changed
	adaptive sorting algorithm
	can be implemented as a stable sort
13.	5. Consider the Quick sort algorithm in which the partitioning procedure splits elements into two sub-arrays and each sub-array contains at least one-fourth of the elements. Let T(n) be the number of comparisons required to sort array of n elements. Then
	Mark only one oval.
	$T(n) \le 2 T(n/4) + cn$
	$T(n) \le T(n/4) + T(3n/4) + cn$
	$T(n) \le 2 T(3n/4) + cn$
	$T(n) \le T(n/3) + T(3n/4) + cn$

14.	6. Path Compression algorithm performs in which of the following operations?
	Mark only one oval.
	Create operation Insert operation Find operation Delete operation
15.	7. Quick sort is a space-optimized version of Mark only one oval.
	Bubble sort Selection sort Insertion sort Binary tree sort
16.	8. Select the algorithm which does not follow Dynamic Programming Mark only one oval. 0/1 Knapsack Problem Matrix Chain Multiplication All Pair Shortest Path - Floyd Warshall Algorithm Job sequencing with deadline

17.	9. The Euler's circuit problem be solved?
	Mark only one oval.
	O(N)
	O(N log N)
	O(log N)
	O(N^2)
18.	10. Which of the following design techniques is used in the merge-sort algorithm?
	Mark only one oval.
	Dynamic programming
	Backtracking
	Greedy method
	Divide and conquer
19.	11. Ω - notation provides an asymptotic
	Mark only one oval.
	Upper bound
	Lower bound
	One that is sandwiched between the two bounds
	None of these

20.	12. The operation of processing each element in the list is known as
	Mark only one oval.
	Sorting
	Merging
	Inserting
	Traversal
01	40 Ti A
21.	13. The Average case occur in linear search algorithm
	Mark only one oval.
	When Item is somewhere in the middle of the array
	When Item is not in the array at all
	When Item is the last element in the array
	When Item is the last element in the array or is not there at all
22.	14. The space factor when determining the efficiency of algorithm is measured by
	Mark only one oval.
	Counting the maximum memory needed by the algorithm
	Counting the minimum memory needed by the algorithm
	Counting the average memory needed by the algorithm
	Counting the maximum disk space needed by the algorithm

23.	15. The average successful search time taken by binary search on a sorted array of10 item is	
	Mark only one oval.	
	2.6	
	2.7	
	2.8	
	2.9	
24.	16. What is the time complexity of Z algorithm for pattern searching (m = length of text, n = length of pattern)?	
	Mark only one oval.	
	O(n + m)	
	O(m)	
	O(n)	
	O(m * n)	
25.	17. What does Maximum flow problem involve?	
	Mark only one oval.	
	finding a flow between source and sink that is maximum	
	finding a flow between source and sink that is minimum	
	finding the shortest path between source and sink	
	computing a minimum spanning tree	

26.	18. Which of the following methods can be used to solve the Knapsack problem?
	Mark only one oval.
	Brute force algorithm
	Recursion
	Dynamic programming
	All of the mentioned
27.	19. Which of the following problems should be solved using dynamic programming?
	Mark only one oval.
	Merge sort
	Binary search
	Longest common sub sequence
	Quicksort
28.	20. In dynamic programming, the technique of storing the previously calculated values is called
	Mark only one oval.
	Saving value property
	Storing value property
	Memorization
	Mapping

29.	21. If a problem can be solved by combining optimal solutions to non-overlapping problems, the strategy is called
	Mark only one oval.
	Dynamic programming
	Greedy
	Divide and conquer
	Recursion
30.	22. Time complexity of fractional knapsack problem is
	Mark only one oval.
	O(n log n)
	O(n)
	O(n^2)
	O(nW)
31.	23. Prim's algorithm can be efficiently implemented using for graphs with greater density.
	Mark only one oval.
	d-ary heap
	linear search
	Fibonacci heap
	binary search

32.	24. Which of the following is false in the case of a spanning tree of a graph G?
	Mark only one oval.
	It is tree that spans G
	It is a sub graph of the G
	It includes every vertex of the G
	It can be either cyclic or acyclic
33.	25. Consider the following statements. S1. Kruskal's algorithm might produce a non-minimal spanning tree. S2. Kruskal's algorithm can efficiently implemented using the disjoint-set data structure.
	Mark only one oval.
	S1 is true but S2 is false
	Both S1 and S2 are false
	Both S1 and S2 are true
	S2 is true but S1 is false
34.	26. Disjoint set data structure applicable to find
	Mark only one oval.
	Minimum spanning tree
	Minimum shortest path
	Maximum spanning tree
	Maximum path

35.	27. What is the worst-case running time of unions done by size and path compression?
	Mark only one oval.
	O(n)
	O(logn)
	O(n logn)
	O(m log n)
36.	28. The tight bound for building a max heap is
	Mark only one oval.
	O(n)
	O(log2 n)
	0 (n log2 n)
	None of these
37.	29. Which of the following sorting algorithms does not have a worst case running time of $O(n^2)$?
	Mark only one oval.
	Quick sort
	Merge sort
	Insertion sort
	Bubble sort

38.	30. Kruskal's algorithm is used to
	Mark only one oval.
	find minimum spanning tree
	find all pair shortest path algorithm
	Both find minimum spanning tree and find all pair shortest path algorithm
	None of these

This content is neither created nor endorsed by Google.

Google Forms