Online Assessment (Even Sem/Part-I/Part-II Examinations 2019 - 2020

Course Name - Mechine Learing
Course Code - PEC-MCS201A / PEC-MCS201A(BL)

- * You can submit the form ONLY ONCE.
- * Fill the following information for further process.
- * Required

1.	Email address *
2.	Name of the Student *
3.	Enter Full Student Code *
4.	Enter Roll No *
5.	Enter Registration No *
6.	Enter Course Code *

7. Enter Course Name *

8.

Mark only one oval.
Diploma in Pharmacy
Bachelor of Pharmacy
B.TECH.(CSE)
B.TECH.(ECE)
BCA
B.SC.(CS)
B.SC.(BT)
B.SC.(ANCS)
B.SC.(HN)
B.Sc.(MM)
B.A.(MW)
BBA
B.COM
B.A.(JMC)
BBA(HM)
BBA(LLB)
B.OPTOMETRY
B.SC.(MB)
B.SC.(MLT)
B.SC.(MRIT)
B.SC.(PA)
LLB
PGDHM
Dip.CSE
Dip.ECE
Dip.EE
Dip.CE
Dip.ME
() MCA

) M.SC.(CS)

	Offine Assessment (Even defin aren examinations 2010 -
	M.SC.(ANCS)
	M.SC.(MM)
	MBA
	M.SC.(BT)
	M.TECH(CSE)
	LLM
	M.A.(JMC)
	M.A.(ENG)
	M.SC.(MATH)
	M.SC.(MB)
Aı	nswer all the questions. Each question carry one mark.
9.	1. How many terms are required for building a Bayes model?
	Mark only one oval.
	<u> </u>
	2
	<u> </u>
	<u> </u>
10.	2. Where does the Bayes rule can be used?
	Mark only one oval.
	solving queries
	increasing complexity
	decreasing complexity
	answering probabilistic query

11.	3. Supervised learning and unsupervised clustering both require at least one
	Mark only one oval.
	hidden attribute output attribute input attribute categorical attribute
12.	4. Face Recognition system is based on?
	Mark only one oval.
	strong artificial intelligence approach
	weak artificial intelligence approach cognitive artificial intelligence approach
	applied artificial intelligence approach
13.	5. The most widely used metrics and tools to assess a classification model are:
	Mark only one oval.
	confusion matrix
	cost-sensitive accuracy
	area under the ROC curve
	all of the these

14.	6. When performing regression or classification, which of the following is the correct way to preprocess the data?
	Mark only one oval.
	\bigcirc PCA \rightarrow normalize PCA output \rightarrow training
	onormalize the data $ ightarrow$ PCA $ ightarrow$ normalize PCA output $ ightarrow$ training
	none of these
15.	7.Classifier performance can be measured by
	Mark only one oval.
	k Fold
	precision
	stratified cross-validation
	LOOCV
16.	8. In Bayes Theorem, $P(A \mid B) = \{ P(B \mid A) * P(A) \} / P(B)$, where $P(B \mid A)$ is:
	Mark only one oval.
	the probability of event A (hypothesis) occurring given that B (evidence) has occurred.
	the probability of the event B (evidence) occurring given that A (hypothesis) has occurred.
	the probability of event B (hypothesis) occurring
	the probability of event A (evidence) occurring

17.	9.If the independent variables are highly correlated with each other than other variables, then such condition is called
	Mark only one oval.
	target variable
	predictor
	outliers
	multi collinearity
18.	10. If an algorithm does not perform well even with training data set, then such problem is called
	Mark only one oval.
	multicollinearity
	over fitting
	under fitting
	outlier
19.	11. Regression trees are often used to model data.
	Mark only one oval.
	linear
	non linear
	categorical
	symmetrical

20.	12. K-fold cross-validation is(Probable duplicate)
	Mark only one oval.
	linear in K quadratic in K cubic in K exponential in K
21.	13. How the compactness of the Bayesian network can be described? Mark only one oval.
	locally structured fully structured partial structure all of these(
22.	14. What is viewed as problem of probabilistic inference Mark only one oval. speech recognition speaking hearing utterance

23.	15. To find the minimum or the maximum of a function, we set the gradient to zero because		
	Mark only one oval.		
	the value of the gradient at extreme of a function is always zero		
	depends on the type of problem		
	both the value of the gradient at extreme of a function is always zero and depends on the type of problem		
	None of these		
24.	16. How do you handle missing or corrupted data in a data set?		
	Mark only one oval.		
	drop missing rows or columns		
	replace missing values with mean/median/mode		
	assign a unique category to missing values		
	all of these		
25.	17. Which of the following is a good test data set characteristic?		
	Mark only one oval.		
	large enough to yield meaningful results		
	Option 2large enough to yield meaningful result		
	both large enough to yield meaningful results and large enough to yield meaningful results		
	none of these		

26.	18. Which of the following is a widely used and effective machine learning algorithm based on the idea of bagging?
	Mark only one oval.
	decision Tree
	regression
	classification
	random Forest
27.	19. The average positive difference between computed and desired outcome values
	Mark only one oval.
	root mean squared error
	mean squared error
	mean absolute error
	mean positive error
28.	20. Another name for an output attribute
	Mark only one oval.
	predictive variable
	independent variable
	estimated variable
	dependent variable

29.	21. A feed-forward neural network is said to be fully connected when
	Mark only one oval.
	all nodes are connected to each other
	all nodes at the same layer are connected to each other
	all nodes at one layer are connected to all nodes in the next higher layer
	all hidden layer nodes are connected to all output layer nodes
30.	22. Epochs represent the total number of
	Mark only one oval.
	input layer nodes
	passes of the training data through the network
	network nodes
	passes of the test data through the network
31.	23. Suppose you are using SVM with linear kernel of polynomial degree 2. Think that you increase the complexity (or degree of polynomial of this kernel). What would you think will happen?
	Mark only one oval.
	increasing the complexity will over fit the data
	increasing the complexity will under fit the data
	nothing will happen since your model was already 100% accurate
	none of these

32.	24. Entropy is defined as
	Mark only one oval.
	measure of the amount of uncertainty or randomness in data measures the relative change in entropy with respect to the independent variables
	measure of error
	none of these
33.	25. Information gain is also known as
	Mark only one oval.
	shannon Entropy
	kullback-Leibler divergence
	both shannon Entropy and kullback-Leibler divergence
	None of these
34.	26. The tree can be explained by two entities, namely decision nodes and leaves where the leaves are
	Mark only one oval.
	decisions or the final outcomes
	are points where the data is split.
	both decisions or the final outcomes and are points where the data is split.
	none of these

35.	27. In which of the following applications can we use deep learning to solve the
	problem?
	Mark only one oval.

man only one oran

protein structure prediction	on
prediction of chemical rea	actions
detection of exotic partic	es
all of these	

36. 28. What are the issues on which biological networks proves to be superior than Al networks?

Mark only one oval.

flexibility
robustness & fault tolerance
collective computation
all of these

37. 29. Sigmoid Activation function is

Mark only one oval.

f(x) = 1 / 1 + exp(-x)
$f(x) = 1 - \exp(-2x) / 1 + \exp(-2x)$
$ r(x) = \max(0,x) $
None of these

38.	30. The number of nodes in the input layer is 10 and the hidden layer is 5. The maximum number of connections from the input layer to the hidden layer are
	Mark only one oval.
	<u> </u>
	less than 50
	more than 50
	it is an arbitrary value

This content is neither created nor endorsed by Google.

Google Forms