Online Assessment (Special Examination) (Even Sem/Part-I/Part-II Examinations 2019 - 2020

Course Name - Engineering Physics II Course Code - PH 201

- * You can submit the form ONLY ONCE.
- * Fill the following information for further process.
- * Required

1.	Email address *
2.	Name of the Student *
3.	Enter Full Student Code *
4.	Enter Roll No *
5.	Enter Registration No *

6.	Enter Course Code *
7.	Enter Course Name *

8.	Select Your Programme *
	Mark only one oval.
	Diploma in Pharmacy
	Bachelor of Pharmacy
	B.TECH.(CSE)
	B.TECH.(ECE)
	BCA
	B.SC.(CS)
	B.SC.(BT)
	B.SC.(ANCS)
	B.SC.(HN)
	B.Sc.(MM)
	B.A.(MW)
	BBA
	B.COM
	B.A.(JMC)
	BBA(HM)
	BBA(LLB)
	B.OPTOMETRY
	B.SC.(MB)
	B.SC.(MLT)
	B.SC.(MRIT)
	B.SC.(PA)
	LLB
	PGDHM
	Dip.CSE
	Dip.ECE
	Dip.EE
	Dip.CE
	Dip.ME
	MCA
	M.SC.(CS)

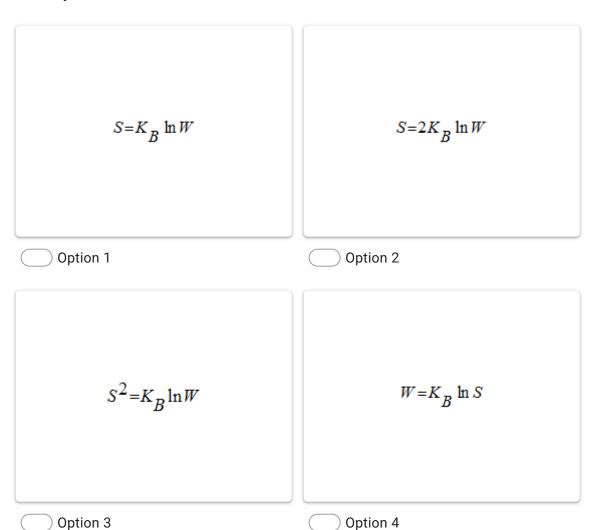
2/1/2021		Online Assessment (Special Examination) (Even Sem/Part-I/Part-II Examinations 2019 - 2020
		M.SC.(ANCS)
		M.SC.(MM)
		MBA
		M.SC.(BT)
		M.TECH(CSE)
		LLM
		M.A.(JMC)
		M.A.(ENG)
		M.SC.(MATH)
		M.SC.(MB)
	Α	nswer all the questions. Each question carry one mark.
	9.	1. A perfectly black body
		Mark only one oval.
		absorbs all the incident radiation
		allow all the incident radiation to pass through it
		has its surface coated with lamp black or graphite
		None of these
	10.	2. In Graded Index fibre refractive index vary
		Mark only one oval.
		tangentially
		transversely
		radially
		longitudinally

3. An optical fibre whose core and cladding are made of materials of refractive

index 1.6 and 1.5 respectively. Numerical aperture of the optical fibre is

11.

	Mark only one oval.
	0.55677
	55.77
	0.2458
	0.647852
12.	4. Population inversion in preparing laser beam can be achieved
	Mark only one oval.
	when one of the excited states is less populated than the ground state
	when one of the excited states is more populated than the ground state
	when the population of one excited state and the ground state are equal
	None of these
13.	5. The device, expected to have the highest input impedance is
	Mark only one oval.
	MOSFET
	BJT
	JFET
	None of these


14.	6. For small value of damping constant, the quality factor
	Mark only one oval.
	decreases
	increases
	remains constant
	None of these
15.	7. A process during which the pressure remains constant is
	Mark only one oval.
	isometric process
	isothermal process
	isochoric process
	isobaric process
16.	8. Pauli's exclusion principal has been used in
	Mark only one oval.
	MB statistics
	BE statistics
	FD statistics
	both BE and FD statistics

17.	9. The number of possible arrangements of three Boltzons in three cell is
	Mark only one oval.
18.	10. If the velocity of a particle executing SHM is maximum, then displacement will be
	Mark only one oval.
	maximum minimum less than zero greater than zero
19.	11. If two SHM of the same amplitude, time period and phase act at right angles to each other, the resultant vibration is Mark only one oval.
	elliptical
	circular
	straight line parabolic

20. 12. In F-D statistics, the volume of phase cell is *Mark only one oval.*

n	○ n²
h^3	
n	
Option 3	not fixed

21. 13. The relation between entropy S an thermo dynamical probability W is given by *Mark only one oval.*

22. 14. In the Heisenberg uncertainty principle, two measurable properties of a particle cannot be observed precisely at the same time are

Mark only one oval.

:			
spin	and	colour	

energy and torque

position and momentum

size and speed

23.	15. The SI unit of the force constant of a spring is	
	Mark only one oval.	
	Nm	
	◯ N/m	
	◯ Nm²	
	\bigcirc N	
24.	16. If $\boldsymbol{\omega}$ is the angular frequency of a body and k is the damping constant, then its quality factor is	
	Mark only one oval.	
	\bigcirc ω/k	
	\sim 2 ω /k	
	ω /2k	
	None of these	

25. 17. Relativistic momentum-energy relation is

Mark only one oval.

$$E = \sqrt{p^2 c^2 + m_0^2 c^4}$$

$$E = \sqrt{p^2 c^2 - m_0^2 c^4}$$

Option 1

Option 2

$$E = \sqrt{p^2c^2 + m_0c^4}$$

 $E = \sqrt{pc + m_0 c^4}$

Option 3

Option 4

26. 18. Example of weakly damped harmonic oscillator is

Mark only one oval.

- dead-bead galvanometer
- tangent galvanometer
- ballistic galvanometer
- None of these

27. 19. The total energy operator can be written as

Mark only one oval.

$-i\hbarrac{\partial}{\partial t}$	$i\hbar \frac{\partial}{\partial t}$
Option 1	Option 2
$-\hbar \frac{\partial}{\partial t}$	$\hbar \frac{\partial}{\partial t}$
Option 3	Option 4

28. 20. Which of the following is incorrect

Mark only one oval.

 $\left[\hat{z},\hat{p}_{z}\right]\!=\!i\hbar$

 $\left[\hat{z},\hat{p}_{z}\right] =i\hbar$

Option 1

Option 2

 $\left[\hat{L}_{x},\hat{L}_{y}\right]=i\hbar L_{z}$

 $\left[\hat{L}_{x},\hat{x}\right]=i\hbar y$

Option 3

Option 4

29. 21. The pinch-off voltage is equal to

Mark only one oval.

drain-to-source	voltage

gate-to-source voltage

gate-to-source cut-off voltage

gate voltage

30. 22. The ratio of He to Ne in a He-Ne laser is of the order of Mark only one oval.

1:15

1:10

5:1

1:1

31. 23. For a Wein bridge oscillator, the frequency f is given by Mark only one oval.

 $f = 1/2\pi vRC$

 $f = 1\sqrt{2\pi RC}$

Option 1

Option 2

 $f = 1/2\pi Rc$

 $f = 2\pi/RC$

Option 3

32.	24. The average energy of harmonic oscillator in 3 dimension is
	Mark only one oval.
	◯ kT
	3kT
	3KT/2
	KT/5
33.	25. A differential amplifier
	Mark only one oval.
	is a part of an Op-amp
	has one input and one output
	has two outputs
	is a part of an Op-amp and has one input, one output

34. 26. The mathematical formula for Fermi energy at 0 K is

Mark only one oval.

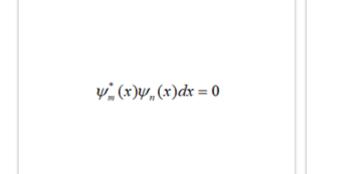
$$\frac{\hbar^2}{8\pi V} \left(\frac{3N}{2m}\right)^{\frac{2}{3}}$$

$$\frac{\hbar^2}{2m} \left(\frac{3N}{8\pi V} \right)^{\frac{2}{3}}$$

Option 1

Option 2

$$\frac{\hbar^3}{2m} \left(\frac{3N}{8\pi V}\right)^{\frac{2}{3}}$$


$$\frac{\hbar^2}{2m} \left(\frac{3N}{8\pi V}\right)^{\frac{3}{2}}$$

Option 3

35. 27.

If two waves functions $\psi_m(x)$ and $\psi_n(x)$ are orthogonal to each other, mathematically it will be represented by

Mark only one oval.

 $\psi_m^*(x)\psi_n(x)dx = 1$

Option 1

Option 2

$$\int_{-\infty}^{+\infty} \psi_m^*(x) \psi_n(x) dx = 1$$

 $\int_{-\infty}^{+\infty} \psi_m^*(x) \psi_n(x) dx = 0$

Option 3

36. 28. The Schrodinger time independent equation can be written as *Mark only one oval.*

 $H\psi=E\psi \qquad \qquad H\psi=(E-V)\psi$ Option 2 $H\psi=(E+V)\psi \qquad \qquad H\psi+E\psi=0$

Option 4

37. 29. The MB statistics applicable for

Mark only one oval.

- distinguishable particle
- indistinguishable particle
- semi distinguishable particle
- None of these

38. 30. A glass of refractive index 1.5 immersed in oil of refractive index 1.1. The critical angle is

Mark only one oval.

$$i_c = sin^{-1}(11/15)$$

$$i_c = cos^{-1}(0.8)$$

$$i_c = cos^{-1}(0.8)$$
Option 2

Option 3

None of these

This content is neither created nor endorsed by Google.

Google Forms