Online Assessment (Even Sem/Part-I/Part-II Examinations 2019 - 2020

Course Name -Data Structure and Algorithm Course Code - BCSE201(BL)

- * You can submit the form ONLY ONCE.
- * Fill the following information for further process.
- * Required

1.	Email address *
2.	Name of the Student *
3.	Enter Full Student Code *
4.	Enter Roll No *
5.	Enter Registration No *
6.	Enter Course Code *

7. Enter Course Name *

8.

Mark only one oval.
Diploma in Pharmacy
Bachelor of Pharmacy
B.TECH.(CSE)
B.TECH.(ECE)
BCA
B.SC.(CS)
B.SC.(BT)
B.SC.(ANCS)
B.SC.(HN)
B.Sc.(MM)
B.A.(MW)
BBA
B.COM
B.A.(JMC)
BBA(HM)
BBA(LLB)
B.OPTOMETRY
B.SC.(MB)
B.SC.(MLT)
B.SC.(MRIT)
B.SC.(PA)
LLB
PGDHM
Dip.CSE
Dip.ECE
Dip.EE
Oip.CE
Oip.ME
MCA
(M.SC.(CS)

	M.SC.(ANCS)
	M.SC.(MM)
	MBA
	M.SC.(BT)
	M.TECH(CSE)
	LLM
	M.A.(JMC)
	M.A.(ENG)
	M.SC.(MATH)
	M.SC.(MB)
A	nswer all the questions. Each question carry one mark.
9.	1. In a circular linked list
	Mark only one oval.
	Components are all linked together in some sequential manner.
	There is no beginning and no end.
	Components are arranged hierarchically
	Forward and backward traversal within the list is permitted.
10.	2. Which of the following operations is performed more efficiently by doubly linked list than by singly linked list?
	Mark only one oval.
	Deleting a node whose location in given
	Searching of an unsorted list for a given item
	Inverting a node after the node with given location
	Traversing a list to process each node

11.	3. What is the postfix expression for the corresponding infix expression?a+b*c
	Mark only one oval.
	ab+c*
	abc+*
	a+bc*
	abc*+
12.	4. A variant of linked list in which last node of the list points to the first node of the list is?
	Mark only one oval.
	Singly linked list
	Doubly linked list
	Circular linked list
	Multiply linked list
13.	5. What is the average case time complexity of selection sort?
	Mark only one oval.
	O(nlogn)
	O(logn)
	O(n)
	O(n2)

14.	6. Leaves of which of the following trees are at the same level?
	Mark only one oval.
	Binary tree
	B-tree
	AVL-tree
	Normal Tree
15.	7. If the number of records to be sorted is small, then sorting can be efficient.
	Mark only one oval.
	Merge
	Неар
	Selection
	Bubble
16.	8. If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at
10.	a time, in what order will they be removed?
	Mark only one oval.
	ABCD
	DCBA
	DCAB
	ABDC

1/.	9. The complexity of linear search algorithm is
	Mark only one oval.
	O(n) O (log n) O(n2) O (n log n)
18.	10. What is a randomized Quick Sort?
	Mark only one oval.
	The leftmost element is chosen as the pivot The rightmost element is chosen as the pivot
	Any element in the array is chosen as the pivot
	A random number is generated which is used as the pivot
19.	11. The leaf node of tree is
	Mark only one oval.
	Internal node
	External node
	Parent node
	Root node

20.	12. The following postfix expression with single digit operands is evaluated using a stack:8 $2\ 3^2 + 5^2 $
	Mark only one oval.
	6, 1
	5, 7
	3, 2
	1, 5
21.	13. A root of binary tree contains maximum
	Mark only one oval.
	2 subtrees
	3 subtrees
	4 subtrees
	5 subtrees
22.	14. A binary search tree whose left subtree and right subtree differ in hight by at most 1 unit is called
	Mark only one oval.
	AVL tree
	Red-black tree
	Lemma tree
	None of the above

23.	15. Which of the following is not a tree traversal
	Mark only one oval.
	Preorder
	Postorder
	Shift order
	Inorder
24.	16. Which of the following uses FIFO method?
	Mark only one oval.
	Queue
	Stack
	Hash table
	Linked List
25.	17. A circular queue is implemented using an array of size 10. The array index starts with 0, front is 6, and rear is 9. The insertion of next element takes place at the array index.
	Mark only one oval.
	O
	7
	<u> </u>
	10

26.	18. Which among the below specified condition is applicable if the Queue is non – empty?
	Mark only one oval.
	rear > front
	rear < front
	rear = front
	Unpredictable
27.	19. A data structure in which elements can be inserted or deleted at/from both the ends but not in the middle is?
	Mark only one oval.
	Queue
	Circular queue
	Dequeue
	Priority queue
28.	20. Linked list is considered as an example of type of memory allocation.
	Mark only one oval.
	Dynamic
	Static
	Compile time
	Неар

29.	21. What is the order of a matrix?
	Mark only one oval.
	number of rows X number of columns
	number of columns X number of rows
	number of rows X number of rows
	number of columns X number of columns
30.	22. From where does the insertion and deletion of elements get accomplished in Queues?
	Mark only one oval.
	Only Front ends
	Front & Rear ends respectively
	Rear & Front ends respectively
	Only Rear ends
31.	23. A linear collection of data elements where the linear node is given by means of
01.	pointer is called?
	Mark only one oval.
	Linked list
	Node list
	Primitive list
	None

32.	24. When is the pop operation on Stack considered to be an error?
	Mark only one oval.
	Only when the stack is empty Only when the stack is full
	When the stack is neither empty
	Cannot be predicted
33.	25. Which of the following data structure is linear type?
	Mark only one oval.
	Graph
	Tree
	Binary tree
	Stack
34.	26. How many sub arrays does the quick sort algorithm divide the entire array into?
	Mark only one oval.
	One
	Two
	Three
	Four

35.	27. In a circular queue the value of r will be
	Mark only one oval.
	r=r+1 r=(r+1) % [QUEUE_SIZE - 1] r=(r+1) % QUEUE_SIZE r=(r-1) % QUEUE_SIZE
36.	28. In linked list implementation of a queue, where does a new element be inserted?
	Mark only one oval.
	At the head of link list At the tail of the link list At the center position in the link None
37.	29. What is the name of the address of the first element in an array? Mark only one oval. Base Address Terminal Address Port Address IP Address

38.	30. Which of the following is not the type of queue?
	Mark only one oval.
	Ordinary queue
	Single ended queue
	Circular queue
	Priority queue

This content is neither created nor endorsed by Google.

Google Forms