Online Assessment (Special Examination) (Even Sem/Part-I/Part-II Examinations 2019 - 2020

Course Name - Formal Language and Automata Course Code - BCSE404

- * You can submit the form ONLY ONCE.
- * Fill the following information for further process.
- * Required

1.	Email address *
2.	Name of the Student *
3.	Enter Full Student Code *
4.	Enter Roll No *
5.	Enter Registration No *

6.	Enter Course Code *
7.	Enter Course Name *

8.

Mark only one oval.
Diploma in Pharmacy
Bachelor of Pharmacy
B.TECH.(CSE)
B.TECH.(ECE)
BCA
B.SC.(CS)
B.SC.(BT)
B.SC.(ANCS)
B.SC.(HN)
B.Sc.(MM)
B.A.(MW)
ВВА
B.COM
B.A.(JMC)
BBA(HM)
BBA(LLB)
B.OPTOMETRY
B.SC.(MB)
B.SC.(MLT)
B.SC.(MRIT)
B.SC.(PA)
LLB
PGDHM
Dip.CSE
Dip.ECE
Dip.EE
Dip.CE
Oip.ME
MCA
M.SC.(CS)

Answer all the questions. Each question carry one mark.

9. 1. There are _____ tuples in finite state machine

Mark only one oval.

- () 4
- <u>6</u>
- Unlimited
- 10. 2. Transition function maps

Mark only one oval.

- $\sum * Q \rightarrow \Sigma$
- Q * Q -> Σ
- $\sum * \Sigma -> Q$
- Q * Σ -> Q

11.	3.Language of finite automata is
	Mark only one oval.
	Type 0
	Type 1
	Type 2
	Type 3
12.	4.Number of final state require to accept Φ in minimal finite automata
	Mark only one oval.
	1
	2
	<u> </u>
	None of these
13.	5. Regular expression for all strings starts with ab and ends with bba is
	Mark only one oval.
	aba*b*bba
	ab(ab)*bba
	ab(a+b)*bba
	None of these
	1.5.1.5 51 4.1.550

14.	6. How many DFA's exits with two states over input alphabet {0,1}?
	Mark only one oval.
	16
	<u>26</u>
	21
	<u>64</u>
15.	7. Number of states require to simulate a computer with memory capable of storing '3' words each of length '8'
	Mark only one oval.
	3*2^8
	2^(3*8)
	2^(3+8)
	None of these
16.	8. A regular language over an alphabet a is one that can be obtained from
	Mark only one oval.
	union
	concatenation
	kleene
	All of these

17.	9. Regular expression {0,1} is equivalent to
	Mark only one oval.
	0 U 1
	0/1
	0+1
	All of these
18.	10. Push down automata accepts which language
	Mark only one oval.
	Context sensitive language
	Context free language
	Recursive language
	None of these
19.	11. Moore Machine is an application of:
	Mark only one oval.
	Finite automata without input
	Finite automata with output
	Non- Finite automata with output
	None of these

20.	12. What is the output for the given language? Language: A set of strings over $\Sigma = \{a, b\}$ is taken as input and it prints 1 as an output "for every occurrence of a, b as its substring. (INPUT: abaaab)
	Mark only one oval.
	0010001
	0101010
	0111010
	0010000
21.	13. It is less complex to prove the closure properties over regular languages using
	Mark only one oval.
	○ NFA
	□ DFA
	PDA
	Can't be said
00	
22.	14. Which of the following is an application of Finite Automaton?
	Mark only one oval.
	Compiler Design
	Grammar Parsers
	Text Search
	All of these

23.	15. To derive a string using the production rules of a given grammar, we use:
	Mark only one oval.
	Scanning
	Parsing
	Derivation
	All of these
24.	16.The transition a Push down automaton makes is additionally dependent upon the:
	Mark only one oval.
	stack
	input tape
	terminals
	None of these
25.	17. A PDA machine configuration (p, w, y) can be correctly represented as
	Mark only one oval.
	current state, unprocessed input, stack content)
	(unprocessed input, stack content, current state)
	(current state, stack content, unprocessed input)
	None of these

26.	18. If the PDA does not stop on an accepting state and the stack is not empty, the string is:
	Mark only one oval.
	rejected
	goes into loop forever
	both rejected & goes into loop forever
	None of these
27.	19. A language accepted by Deterministic Push down automata is closed under which of the following?
	Mark only one oval.
	Complement
	Union
	both Complement and Union
	None of these
28.	20. The format: A->aB refers to which of the following?
	Mark only one oval.
	Chomsky Normal Form
	Greibach Normal Form
	Backus Naur Form
	None of these

29.	21. Which of the following does not have left recursions?
	Mark only one oval.
	Chomsky Normal Form
	Greibach Normal Form
	Backus Naur Form
	All of these
30.	22. Every grammar in Chomsky Normal Form is:
	Mark only one oval.
	regular
	context sensitive
	context free
	All of these
31.	23. In which of the following, does the CNF conversion find its use?
	Mark only one oval.
	CYK Algorithm
	Bottom up parsing
	Preprocessing step in some algorithms
	All of these

32.	24. Which of the following do we use to form an NFA from a regular expression?
	Mark only one oval.
	Subset Construction Method Power Set Construction Method
	Thompson Construction Method
	Scott Construction Method
33.	25. Which among the following can be an example of application of finite state machine(FSM)?
	Mark only one oval.
	Communication Link
	Adder
	Stack
	None of these
34.	26. Predict the number of transitions required to automate the following language
	using only 3 states:L= {w w ends with 00}
	Mark only one oval.
	3
	2
	4
	cannot be said

35.	27. The total number of states to build the given language using DFA:L= {w w has exactly 2 a's and at least 2 b's}
	Mark only one oval.
	10
	11
	12
	13
36.	28. L1= {w w does not contain the string tr }L2= {w w does contain the string tr}Given Σ = {t, r}, The difference of the minimum number of states required to form L1 and L2?
	Mark only one oval.
	0
	1
	2
	cannot be said
37.	29. The output alphabet can be represented as:
	Mark only one oval.
	δ
	$igstar$ Δ
	Σ
	None of these

38.	30. In mealy machine, the O/P depends upon?
	Mark only one oval.
	State
	Previous State
	State and Input
	Only Input

This content is neither created nor endorsed by Google.

Google Forms