Online Assessment (Even Sem/Part-I/Part-II Examinations 2019 - 2020

Course Name - APPLIED & DIGITAL ELECTRONICS Course Code - DEE404

* You can submit the	form ONLY ONCE.
----------------------	-----------------

- * Fill the following information for further process.
- * Required

1.	Email address *
2.	Name of the Student *
3.	Enter Full Student Code *
4.	Enter Roll No *
5.	Enter Registration No *
6.	Enter Course Code *

7. Enter Course Name *

8.	Select Your Programme *
	Mark only one oval.
	Diploma in Pharmacy
	Bachelor of Pharmacy
	B.TECH.(CSE)
	B.TECH.(ECE)
	BCA
	B.SC.(CS)
	B.SC.(BT)
	B.SC.(ANCS)
	B.SC.(HN)
	B.Sc.(MM)
	B.A.(MW)
	BBA
	<u>B.COM</u>
	B.A.(JMC)
	BBA(HM)
	BBA(LLB)
	B.OPTOMETRY
	B.SC.(MB)
	B.SC.(MLT)
	B.SC.(MRIT)
	B.SC.(PA)
	LLB
	PGDHM
	Dip.CSE
	Dip.ECE
	Dip.EE
	Dip.CE
	Dip.ME
	MCA
	M.SC.(CS)

	M.SC.(ANCS)
	M.SC.(MM)
	MBA
	M.SC.(BT)
	M.TECH(CSE)
	LLM
	M.A.(JMC)
	M.A.(ENG)
	M.SC.(MATH)
	M.SC.(MB)
Ar	nswer all the questions. Each question carry one mark.
9.	1. Perform binary addition: 101101 + 011011 = ?
	Mark only one oval.
	011010
	1010100
	101110
	1001000
10.	2. 1's complement of 1011101 is
	Mark only one oval.
	0101110
	1001101
	0100010
	1100101

11.	3. On addition of -46 and +28 using 2's complement, we get
	Mark only one oval.
	10010 00101
	01011
	0100101
12.	4. On subtracting (010110)2 from (1011001)2 using 2's complement, we get
	Mark only one oval.
	0111001
	1100101
	0110110
	1000011
13.	5. If the number of bits in the sum exceeds the number of bits in each added
	numbers, it results in
	Mark only one oval.
	Successor
	Overflow
	Underflow
	Predecessor

14.	6. 1's complement can be easily obtained by using
	Mark only one oval.
	Comparator
	Inverter
	Adder
	Subtractor
15.	7. Which one is used for logical manipulations?
	Mark only one oval.
	2's complement
	9's complement
	1's complement
	10's complement
16.	8. Add the two BCD numbers: 1001 + 0100 = ?
10.	8. Add the two BCD numbers: 1001 + 0100 = ?
	Mark only one oval.
	10101111
	01010000
	00010011
	00101011

17.	9. In Boolean algebra, the OR operation is performed by which properties?
	Mark only one oval.
	Associative properties
	Commutative properties
	Distributive properties
	All of the these
18.	10. According to boolean law: A + 1 = ?
	Mark only one oval.
	1
	A
	O
	A'
19.	11. Internal propagation delay of asynchronous counter is removed by
	Mark only one oval.
	Ripple counter
	Ring counter
	Modulus counter
	Synchronous counter

20.	12. Ripple counters are also called
	Mark only one oval.
	SSI counters
	Asynchronous counters
	Synchronous counters
	VLSI counters
21.	13. $A(A + B) = ?$
	Mark only one oval.
	AB
	1
	(1 + AB)
	A
22.	14. In D flip-flop, if clock input is HIGH & D=1, then output is
	Mark only one oval.
	O
	1
	Forbidden
	Toggel

23.	15. Half-adders have a major limitation in that they cannot
	Mark only one oval.
	Accept a carry bit from a present stage
	Accept a carry bit from a next stage
	Accept a carry bit from a previous stage
	Accept a carry bit from the following stages
24.	16. If A, B and C are the inputs of a full adder then the sum is given by
	Mark only one oval.
	A AND B AND C
	A OR B AND C
	A XOR B XOR C
	A OR B OR C
25.	17. The advantage of 2's complement system is that
	Mark only one oval.
	Only one arithmetic operation is required
	Two arithmetic operations are required
	No arithmetic operations are required
	Different Arithmetic operations are required

26.	18. Binary coded decimal is a combination of
	Mark only one oval.
	Two binary digits Three binary digits
	Four binary digits
	Five binary digits
27.	19. How many AND, OR and EXOR gates are required for the configuration of full adder?
	Mark only one oval.
	1, 2, 2
	2, 1, 2
	3, 1, 2
	4, 0, 1
28.	20. For subtracting 1 from 0, we use to take a from neighbouring bits.
	Mark only one oval.
	Carry
	Borrow
	Input
	Output

29.	21. The expression for Absorption law is given by
	Mark only one oval.
	A + AB = A
	A + AB = B
	\triangle AB + AA' = A
	A + B = B + A
30.	22. Half-adders have a major limitation in that they cannot
	Mark only one oval.
	Accept a carry bit from a present stage
	Accept a carry bit from a next stage
	Accept a carry bit from a previous stage
	Accept a carry bit from the following stages
31.	23. How many AND, OR and EXOR gates are required for the configuration of full adder?
	Mark only one oval.
	1, 2, 2
	2, 1, 2
	3, 1, 2
	4, 0, 1

32.	24. Let the input of a subtractor is A and B then what the output will be if A = B?
	Mark only one oval.
	A
	В
33.	25. The full subtractor can be implemented using
	Mark only one oval.
	Two XOR and an OR gates
	Two half subtractors and an OR gate
	Two multiplexers and an AND gate
	Two comparators and an AND gate
34.	26. Which statement below best describes a Karnaugh map?
	Mark only one oval.
	It is simply a rearranged truth table
	The Karnaugh map eliminates the need for using NAND and NOR gates
	Variable complements can be eliminated by using Karnaugh maps
	A Karnaugh map can be used to replace Boolean rules

35.	27. The Boolean expression Y = (AB)' is logically equivalent to what single gate?
	Mark only one oval.
	NAND
	NOR
	AND
	OR
36.	28. Which combinational circuit is renowned for selecting a single input from multiple inputs & directing the binary information to output line?
	Mark only one oval.
	Data Selector
	Data distributor
	Both data selector and data distributor
	DeMultiplexer
37.	29. What is the function of an enable input on a multiplexer chip?
	Mark only one oval.
	To apply Vcc
	To connect ground
	To active the entire chip
	To active one half of the chip

38.	30. The enable input is also known as
	Mark only one oval.
	Select input
	Decoded input
	Strobe
	Sink

This content is neither created nor endorsed by Google.

Google Forms