

BRAINWARE UNIVERSITY

Course – BSc(CS)

Basic Electronics II: Analog Electronics (EC201/BCSG201)

(Semester - 2)

Time allotted: 3 Hours Full Marks: 70

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group -A

(Multiple Choice Type Questions)

 $10 \times 1 = 10$

- 1. Choose the correct alternative from the following
- (i) The number of pins of the IC741 OP-AMP is

a. 8

b. 10

c. 12

d. 16

(ii) The saturation point on the d.c. load line is

a.
$$V_{CE} = 0$$
, $I_{C,sat} = \frac{V_{cc}}{R_C}$

b.
$$V_{BE} = 0$$
, $I_{C,sat} = \frac{V_{cc}}{R_C}$

c.
$$V_{CE} = 0$$
, $I_{C,sat} = \frac{V_{BB}}{R_C}$

d.
$$V_{BE} = 0$$
, $I_{C,sat} = \frac{V_{BB}}{R_C}$

- (iii) The maximum rate of change of output voltage per unit time is
 - a. Slew rate

b. CMRR

c. offset voltage

- d. SVRR
- (iv) FET is advantageous over BJT since it is
 - a. thermally more stable
- b. it use one p-n junction
- c. it is a voltage controlled device
- d. none of these

(v)	An ide	eal OP AMP has			
	a.	infinite input impedance	b.	zero output impedance	
	c.	infinite voltage gain	d.	all of the these	
(vi)	Transconductance of a FET is proportional to				
	a.	$\sqrt{V_{DS}}$	b.	I_{DS}	
	c.	$\sqrt{I_{DS}}$	d.	none of these	
(vii)	The slo	ew rate of an ideal OP AMP is			
	a.	zero	b.	infinite	
	c.	$1 \text{ V/}\mu\text{s}$	d.	$10 \text{ V/}\mu\text{s}$	
(viii)	An amplifier has gain of -1000 and feed back ratio β = -0.1. If it had change of gain by 20% due to change of temperature, what will be the change in the gain of the feedback amplifier				
	a.	1%	b.	2%	
	c.	0.5%	d.	0.2%	
(ix)	If FET operates in cut-off, the depletion layers are				
	a.	touching each other	b.	close together	
	c.	far apart	d.	None of these	
(x)	The feedback element in the integrator is a				
	a.	capacitor	b.	inductor	
	c.	diode	d.	resistance	
Group – B					
(Short Answer Type Questions)					$3 \times 5 = 15$
 Answer any <i>three</i> from the following With necessary explanation, represent a transistor as a two-port device in terms of h parameters. Sketch the structure of a p channel depletion type MOSFET. Explain 				•	[5]
3.	how the	depletion region is produced in the	e ch	annel. Can a depletion	
4.	MOSFET work in the enhancement mode? If so how? Describe the use of an OPAMP as inverting amplifier.				[5] [5]

Draw the circuit diagram for self-bias arrangement for an n-p-n transistor in the CE configuration. [5] Derive the expression for its stability factor with respect to I_{co} . Draw the circuit diagram of a difference amplifier using an OPAMP and find an expression for the output voltage. [5] Group - C (Long Answer Type Questions) $3 \times 15 = 45$ Answer any three from the following (a) Describe the use of an OPAMP as summing amplifier. [5] (b) Sketch the circuit diagram of OPAMP to get $V_0 = -V_1 + 2 V_2 - 3V_3$ [5] (c) Calculate the output voltage for the summing amplifier circuit using OPAMP. Given $V_1 = 0.2V, V_2 = 2V, V_3 = 1V$ and $R_1 = 5K\Omega, R_2 = 20K\Omega,$ $R_3=50K\Omega$ and $R_f=30K\Omega$, where notations carry the usual meanings. [5] 8. Draw the circuit diagram for base bias considering an n-p-n transistor in CE configuration. Derive expressions for its stability factors. Mention demerits of this circuit. What are the functions of the coupling capacitors? [2+6+2]In the base bias circuit of a transistor, $V_{CC}=15$ V, $R_B=300$ K Ω and $R_L\!\!=\!\!2$ $K\Omega.$ If $\beta\!\!=\!\!100,$ $I_{CO}\!\!=\!\!20$ nA and V_{BE} =0.7 V, find the Q point analytically. [5] 9. (a) Develop the theory of action of an OPAMP as an integrator. Draw the circuit diagram of practical integrator. [5+2]An ideal OPAMP has the output connected with the inverting input through resistance of 10 K Ω . Voltage of value 3V is applied through a series-resistance of 5 K Ω between non-inverting input and ground. The inverting input is kept open. Draw the circuit diagram and find [5] the output voltage. (c) Calculate the common mode gain of an operational amplifier having the following parameters: The differential voltage gain A_d=10⁴ and CMRR=2000. [3] (a) Describe with a circuit diagram the action of a Wien bridge 10. oscillator. Find an expression for the frequency of oscillation. [3+7](b) A Wien-bridge oscillator has a frequency of 1000 Hz and a capacitance of 100 pF. Find the resistance. If the amplifier gain is 10, obtain the ratio of the resistances in the other arms. [5] (a) Describe with circuit diagram the action of i) emitter follower and 11. [3+3]ii) Darlington pair Explain with a circuit diagram the operation of a push-pull [4+5]amplifier. Obtain an expression for the maximum efficiency of the

circuit.