

BRAINWARE UNIVERSITY

Course -MCA

Formal Language and Automata Theory (MCA203)

(Semester - 2)

Time	allotte	d: 3 Hours		Full Marks: 70				
[The	figure i	n the margin indicates full marks. Ca their own words as fa		dates are required to give their answers in practicable.]				
		Group	— А					
	(Multiple Choice Type Questions) $10 \times 1 = 10$							
1. (i)	Choose the correct alternative from the following The output of a Mealy Machine depends on							
	a.	The present state only	b.	The present state and the input symbol				
	c.	The input symbol only	d.	None of these				
(ii)	An FS	M						
	a.	Can recognize only natural language such as Hindi	b.	Can recognize all types of languages				
	c.	Cannot recognize any language	d.	Can recognize only regular language				
(iii)								
	a.	L1 is a regular language	b.	(R1)* is a regular expression				
	c.	$\sum^* -(L_1 \cup L_2)$ is not a regular language	d.	$\sum^* -(L_1 \cup L_2)$ is a regular language				
(iv)	Which of the following regular expression represents the language $L=\{a^{2n} \mid n>=0\}$?							
	a.	(aa)*	b.	a*				
	c.	aa*a	d.	a*a*				
(v)	The R	egular set denoted by the regular exp	ress	ion (a+b)(a+b) is				
	a.	$\{a,b\}$	b.	{a,b,ab,ba}				
	c.	{aa,ba}	d.	{aa,ab,ba,bb}				
(vi)	The st	ring generated by the grammar $S \rightarrow$	aS	$bA, A \rightarrow d \mid ccA \text{ is}$				
	a.	aaabd	b.	Bbbddd				

d. dad

c. accdd

(vii)	A pumping lemma is used for prov	ing that		
	a. a language is recursively enumerable	b.	a language is not regular	
	c. two regular sets are equival	ent d.	a language is natural	
(viii) The language accepted by finite au	tomata is		
	a. Type 0	b.	Type 1	
	c. Type 2		Type 3	
(ix)	The language $L\{a^nb^n \mid n>=1\}$			
	a. cannot be accepted by PDA	b.	can be accepted by a PDA type only	of null store
()	c. can be accepted by a PDA of final state only	of d.	can be accepted by using (b) and (c)
(x)	_	1	$\Gamma \subset \Sigma$	
	a. $\sum = \Gamma$		$\Gamma \subseteq \Sigma$	
	c. ∑⊆Γ	a.	\sum is a proper subset of Γ	
		Group – I	3	
	(Short Ans	swer Type (Questions)	$3 \times 5 = 15$
Ansv 2. 3. 4. 5. 6.	 deterministic finite accepter that recognizes the set of all strings on ∑={a,b} which contains even number of a's and odd number of b's. B. Prove that there exists an algorithm for determining whether a regular language, given in standard representation, is empty, finite or infinite. Write a brief note on Chomsky classification of grammars. What do you meant by Mealy Machine? Design a Mealy Machine which performs the addition of two n bit binary number. 			
		Group – C		
	(Long An	swer Type (Questions)	3 x 15 = 45
Answ 7.	ver any <i>three</i> from the following (a) Show that the family of redifferences. (b) Explain the Pumping Lemma in (c) Using Pumping Lemma show the	the context	of Regular Language.	[5] [5] [5]

(a)	The nor of two languages is	
	$nor(L_1, L_2) = \{ w: w \notin L_1 amdw \notin L_2 \}.$	
	Show that the family of regular languages is closed under the nor	
	operation.	[10]
(b)	Find DFA that accepts the following language.	
	L(aa*+aba*b*)	[5]
(a)	Explain the different types of methods of acceptance by Push Down	
	Automata.	[5]
(b)	Construct a Push Down Automata accepting $\{a^{m+n}b^mc^n \mid m,n>=1\}$ by	
	Final state.	[10]
(a)	Describe Turing Machine with example.	[5]
(b)	Design a Turing Machine over {1,b} which can compute	
	concatenation function over $\Sigma = \{1\}$. If a pair of words (w_1, w_2) is the	
	input, the output has to be w_1w_2 .	[10]
(a)	What do you meant by Countable Set?	[3]
(b)	Prove that the set of all Turing machines are countable set.	[6]
(c)	Design a Turing Machine that computes x+y where x and y are two	
	given positive integers represented by unary symbols.	[6]
	(b) (a) (b) (a) (b) (a) (b)	 nor(L₁,L₂)={w: w ∉ L₁amdw ∉ L₂}. Show that the family of regular languages is closed under the nor operation. (b) Find DFA that accepts the following language. L(aa*+aba*b*) (a) Explain the different types of methods of acceptance by Push Down Automata. (b) Construct a Push Down Automata accepting {a^{m+n}b^mcⁿ m,n>=1} by Final state. (a) Describe Turing Machine with example. (b) Design a Turing Machine over {1,b} which can compute concatenation function over Σ={1} . If a pair of words (w₁,w₂) is the input, the output has to be w₁w₂. (a) What do you meant by Countable Set? (b) Prove that the set of all Turing machines are countable set. (c) Design a Turing Machine that computes x+y where x and y are two