

BRAINWARE UNIVERSITY

Course - BCA

Mathematics-II (BCA204/BCAC204)

(Semester - 2)

Time	e allotted: 3 Hours	Full Marks: 70					
[The	•	full marks. Candidates are required to give their answers in wn words as far as practicable.]					
		Group –A					
	(Mul	tiple Choice Type Questions) $10 \times 1 = 10$					
1. (i)	Choose the correct alternative Degree of an isolated vertex	· · · · · · · · · · · · · · · · · · ·					
	a. 1	b. 2					
	c. 3	d. 0					
(ii) Number of edges in a complete graph with n-vertices is:							
	a. ⁿ C ₁	b. ⁿ C ₂					
	c. ⁿ C ₃	d . ${}^{n}C_{n}$					
(iii) If G is a tree with n vertices, then the number of edges of G are							
	a. $n(n+1)$	b. n-1					
	c. n	d. n(n-1)					
(iv)	Every vertex of a null graph	is					
	a. Pendant	b. Isolated					
	c. Odd	d. None of these					
(v)	If the graph has 6 vertices an	d 15 edges then the size of its adjacency matrix is					
	a. 6X6	b. 6X15					
	c. 15X6	d. 15X15					
(vi)	Chromatic number of a comp	lete graph with 15 number of vertices is					
	a. 12	b. 13					
	0 14	d 15					

(vii) The mode of the given frequency distribution is

Xi	0	1	2	3
$\mathbf{f_i}$	9	26	27	22

a. 0

b. 1

c. 2

- d. 3
- (viii) The A.M of 2,4,6,.....2n is
 - a. n+1

b. n(n+1)

c. (n+1)/2

- d. n(n+1)/2
- (ix) Condition for independence of two events A and B is
 - a. $P(A \cap B) = P(A) \cdot P(B)$
- b. P(A+B) = P(A).P(B)
- c. P(A-B) = P(A).P(B)
- d. $P(A \cap B) = P(A) \cdot P(B/A)$
- (x) If $P(A+B) = \frac{2}{7}$ then the probability of P() is
 - a. $\frac{1}{7}$

b. $\frac{2}{7}$

c. $\frac{5}{7}$

d. None of these

Group - B

(Short Answer Type Questions)

 $3 \times 5 = 15$

Answer any three from the following:

2. Prove that the number of odd vertices in a graph is even.

[5]

3. Define Adjacency Matrix for a non-directed graph. Hence find the adjacency matrix for the following graph:

[5]

4. Draw the dual of the following graph:

[5]

5. In the following frequency distribution mean is 4.44 but the distribution table is incomplete with two frequencies missing. Find the two missing frequencies.

Xi	2	3	5	6	7	8	Total
f_i	9	12	?	10	?	1	50

[5]

[5]

6. If A and B are two events associated with the same experiment E, then prove that P(A+B)=P(A)+P(B)-P(AB)

Group – C

(Long Answer Type Questions)

 $3 \times 15 = 45$

Answer any *three* from the following:

7. (a) Prove that, a simple graph with n number of vertices and k number of components can have maximum $\frac{(n-k)(n-k+1)}{2}$ number of edges.

[7]

(b) Calculate the mean, median, Q_1 and Q_3 from the following frequency distribution where Q_1 and Q_3 have their usual meaning:

Class interval	5-10	10-15	15-20	20-25	25-30	30-35
Frequency	2	3	4	5	7	9

[2+2+2+2]

8. (a) Using Dijkstra's Algorithm find the length of the shortest path of the following graph from the vertex a to f:

[8]

(b) If two groups of n_1 and n_2 observations have the mean and standard deviation \overline{x}_1 and s_1 and \overline{x}_2 and s_2 respectively, then show that the S.D.(s) of the composite group is given by $(n+n)s^2 = (n + s^2 + n + s^2) + n + d^2 + n + d^2$

$$(n_1 + n_2)s^2 = (n_1 s_1^2 + n_2 s_2^2) + n_1 d_1^2 + n_2 d_2^2$$

where $d_1 = \overline{x}_1 - \overline{x}$, $d_2 = \overline{x}_2 - \overline{x}$ and \overline{x} is the mean of the composite group.

[7]

9. (a) Find a minimal spanning tree from the following graph using Prim's algorithm:

[8]

- (b) If A and B are independent events, then show that the following pairs are independent:
 - (i) \bar{A} and \bar{B}
 - (ii) A and \bar{B}
 - (iii) \bar{A} and B

[3+2+2]

10. (a) Apply Kruskal's algorithm to find a shortest spanning tree of the

[8]

(b) Find the relation between the arithmetic mean, geometric mean and harmonic mean.

[7]

11. (a) Draw a Graph with four edges and four vertices having degrees 2,2,3,3 if it possible. If not find the reason?

[2]

(b) How many vertices are necessary to construct a graph with exactly 12 edges in which each vertex is of degree 3?

[2]

(c) Find two spanning trees of the following connected graph applying DFS and BFS algorithms:

[6]

(d) In a bolt factory, machines A, B and C manufacture respectively 25%, 35% and 40% of the total output .Of their output 5%, 4% and 2% are defective bolts. A bolt is drawn at random from the product and is found to be defective. What is the probability that it was manufactured by machine C?

[5]