

BRAINWARE UNIVERSITY

Course -BSc(CS)

Mathematics-III (BCS402)

(Semester - 4)

Time allotted: 3 Hours Full Marks: 70

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group -A

(Multiple Choice Type Question)

 $10 \times 1 = 10$

- 1. Choose the correct alternative from the following:
- (i) The dual of a dual is

a. Dual

b. primal

c. both primal and dual

- d. none of these
- (ii) Identify the type of the feasible region given by the set of inequalities:

$$\begin{array}{l}
 x + y \ge 1 \\
 x + y \le 2
 \end{array}$$

where both x and y are non-negative.

a. A triangle

b. quadrilateral

c. An unbounded region

d. An empty region

(iii) Consider the following

$$3x - 2y \le 1$$

$$-x + 3y \ge -1$$

for non-negative x and y. Which of the following points are feasible: A(0,0), B(1,1), C(2,2)?

a. A. B and C

b. A and B

c. A and C

d. B and C

- (iv) The basic feasible solution of the system of equations $x_1 + x_2 + x_3 = 8$; $3x_1 + 2x_2 = 18$ are
 - a. No basic solution

b. (2,6,0) (6,0,2)

c. (1,7,0)(7,1,0)

d. (2,2,0) (6,6,2)

(v) In the following L.P.P:

Minimize
$$z = 3x_1 + 8x_2 + 3x_3 + 7x_4$$

subject to $3x_1 + 5x_2 + x_3 \ge 16$
 $5x_1 + 3x_2 - x_4 \ge 12$
 $x_1, x_2, x_3, x_4 \ge 0$

the number of artificial variables required to initialize the simplex table is

a. 1

b. 2

c. 3

d. 0

(vi) The number of basic variables in a transportation problem of m sources and n destinations, is at most

a. m+n-1

b. m+n

c. mn

d. mn+1

(vii) An assignment problem can be solved by

a. Hungarian method

- b. VAM
- c. Matrix minima method
- d. none of these

(viii) When the total availability is not equal to the total demand, that type of transportation problem is known as

- a. Balanced transportation problem
- b. unbalanced transportation problem
- c. Infeasible transportation problem
- d. Non-degeneracy

(ix) In a fair game the value of the game is

a. Infeasible

b. 0

c. Unbounded

d. Degenerate

(x) Full form of PERT is

- a. Program Estimation & Review Technique
- b. Project Evaluation & Review Technique
- c. Project Estimation & Research Technique
- d. Program Evaluation & Review Technique

Group - B

(Short Answer Type Questions)

 $3 \times 5 = 15$

Answer any three from the following:

2. Write the L.P.P in standard maximization form:

Max
$$z = 3x_1+4x_2+7x_3$$

Subject to
 $2x_1+x_2+7x_3 \le 50$
 $x_1+9x_2-5x_3 \ge 60$
 $5x_1+3x_3 = 100$
 $3x_2+4x_3 \le 80$
for $x_1,x_2,x_3 \ge 0$

[5]

3. Using Graphical method show that the following L.P.P has degenerate solution

Max
$$z = 4x_1 + 3x_2$$

subject to
 $2x_1 + 3x_2 \le 8$
 $3x_1 + 2x_2 \le 12$
 $x_1, x_2 \ge 0$ [5]

4. Find all the basic feasible solutions of the following system of equations

$$x_1 + x_2 + x_3 = 4$$

$$2x_1 + 5x_2 - 2x_3 = 3$$
[5]

5. Find the initial B.F.S and cost of the following transportation problem by North West corner method:

	D1	D2	D3	D4	Availability
01	5	3	6	2	19
O2	4	7	9	1	37
O3	3	7	4	5	34
Demand	16	18	31	25	

[5]

6. Distinguish Between Transportation Problem and Assignment Problem.

[5]

Group - C

(Long Answer Type Questions)

 $3 \times 15 = 45$

Answer any three from the following:

- 7. (a) A small manufacturer is making two products A and B. Two resources R1 and R2 are required to make these products. Each unit of product A requires 1 unit of R1 and 3 units of R2. Each unit of product B requires 1 unit of R1 and 2 units of R2. The manufacturer has 5 units of R1 and 12 units of R2 available. The manufacturer also makes a profit of Rs. 6 per unit of product A when sold and Rs. 5 per unit of product B when sold.
 - (i) Give a mathematical formulation to this linear programming problem for maximizing the profit.
 - (ii) Use graphical method to solve this problem.

[5+5]

(b) Solve the two person zero sum game

	Player B			
Player A		B1	B2	
	A1	3	-2	
	A2	1	2	

[5]

8. (a) Find out the dual of the following problem:

Maximize
$$z = 2x_1 + 3x_2 - 4x_3$$

subject to $3x_1 + x_2 + x_3 \le 2$
 $-4x_1 + 3x_3 \ge 4$
 $x_1 - 5x_2 + x_3 = 5$
 $x_1, x_2 \ge 0$ and x_3 is unrestricted

[7]

(b) Find the optimal solution and the corresponding cost of transportation of the following transportation problem

	D1	D2	D3	D4	Supply
O1	4	6	8	8	40
O2	6	8	6	7	60
О3	5	7	6	8	50
Demand	20	30	50	50	

[8]

[8]

9. (a) The Head of the department has five jobs A, B, C, D, E and five sub-ordinates V, W, X, Y, and Z. The number of hours each sub-ordinates would take to perform each job is as follows:

	V	W	X	Y	Z
Α	3	5	10	15	8
В	4	7	15	18	8
С	8	12	20	20	12
D	5	5	8	10	6
Е	10	10	15	25	10

How would the jobs be allocated to minimize the total time?

(b) Solve the following L.P.P by simplex method:

Maximize
$$z = 4x_1 + 7x_2$$

subject to $2x_1 + x_2 \le 1000$
 $10x_1 + 10x_2 \le 6000$
 $2x_1 + 4x_2 \le 2000$
 $x_1, x_2 \ge 0$ [7]

10. (a) Solve the following L.P.P by Big M method:

Maximize
$$z = 2x_1 + 9x_2 + x_3$$

Subject to $x_1 + 4x_2 + 2x_3 \ge 5$
 $3x_1 + x_2 + 2x_3 \ge 4$
 $x_1, x_2, x_3 \ge 0$ [8]

(b) Prove that $x_1 = 2$, $x_2 = 1$, $x_3 = 1$ is a feasible solution of the system of equations

$$x_1 + 4x_2 - x_3 = 5$$
$$2x_1 + 3x_2 + x_3 = 8$$

Reduce the F.S to two different B.F.S.

11. (a) For the game with pay off matrix:

	Player B			
Player A	B1	B2		
A1	1	-3		
A2	3	5		
A3	-1	6		
A4	4	1		
A5	2	2		
A6	-5	0		

Determine the optimal strategies for player A and B using graphical method. Also determine the value of the game.

[7]

[7]

(b) A project consists of 8 activities. The activity completion time and the precedence relationships are as follows:

Activity	A	В	С	D	Е	F	G	Н
Completion	5	7	6	3	4	2	6	5
time(day)								
Predecessor	-	-	-	A	В,С	С	A,D	E,F
activities								

- (i) Draw the network diagram.
- (ii) Calculate the minimum overall project completion time and identify which activities are critical.
- (iii) If the activity E is delayed by 3 day, how is the project completion time affected?
- (iv) If the activity F is delayed by 3 day, how is the project completion time affected?

[4+2+1+1]