

BRAINWARE UNIVERSITY

Course – MCA

Data Structure with Python (MCA202)

(Semester - 2)

Time allotted: 3 Hours Full Marks: 70

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group -A

(Multiple Choice Type Question)

 $10 \times 1 = 10$

1. Cho	ose the correct alternative for the following:	(Any ten)
(i)	The time complexity of Bubble Sort in the best case is	
	a) O (n)	b) O (n ²)
	c) O (n log n)	d) O (log n)
(ii)	What is suitable efficient data structure to co	onstruct a graph?
	a) Stack	b) Linked List
	c) Queue	d) None of these
(iii)	The following sequence of operations is performed on a stack:	
	push(1), push(2), pop, push(1), push(2), pop, pop, pop, push(2), pop	
	The sequence of popped out values are	
	a) 2, 2, 1, 2, 1	b) 2, 2, 1, 1, 2
	c) 2, 1, 2, 2, 1	d) 2, 1, 2, 2, 2
(iv)	The time complexity of Selection Sort algorithm is	
	a) O (n)	b) O (log n)
	c) O (n ²)	d) O (n log n)

(v)	Prerequisite of Binary Search is		
	a) Array must be sorted in ascending order		
	b) Array must be sorted in descending order		
	c) Either (a) or (b)		
	d) None of these		
(vi)	The memory address of the first element of an array is called		
	a) floor address	b) foundation address	
	c) first address	d) base address	
(vii)	An Array follows		
	a) Random Access Mechanism	b) Sequential Access Mechanism	
	c) No Access Mechanism	d) None of these	
(viii)	The prefix notation of A*B+C/D is		
	a) AB*CD/+	b) ABCD*/+	
	c) AB+CD/*	d) +*AB/CD	
(ix)	The maximum number of nodes at level t in a complete binary tree is (level starts from		
	a) 2*t	b) 2 ^t	
	c) t	d) none of these	
(x)	B-Tree is		
	a) unbalanced binary tree	b) binary search tree	
	c) m-way search tree	d) none of these	
(xi)	Queue uses which of the following strategy?		
	a) LIFO	b) FIFO	
	c) both (a) & (b)	d) none of these	

Group - B

(Short Answer Type Question)

 $3 \times 5 = 15$

Answer any three of the following

- 2. Write the algorithms to insert and delete operation of a linear Queue.
- 3. Construct the binary tree from the following information:

Inorder: A D J M H K F C I N L G E B

Preorder: A B C D F H J M K E G I L N

- 4. Write down the algorithm of the conversion of postfix expression from infix expression.
- 5. Write a Python function to insert a node at the front of a singly linked list.
- 6. Write down the BFS algorithm.

Group - C

(Long Answer Type Question)

 $3 \times 15 = 45$

Answer any three of the following

- 7. (a) How can a polynomial such as $5x^2 7x + 9$ be represented by a linked list?
 - (b) Write an algorithm to delete a node from a doubly linked list.
 - (c) "Binary search is better than linear search" Justify.

[5+5+5]

- 8. (a) Draw a binary search tree whose elements are inserted in the following order: 10, 12, 9, 25, 51, 15, 95
 - (b) Write the Python function or algorithm to search a node in a binary search tree.
 - (c) What is AVL tree? What is balance factor?

Construct a AVL tree from the following sequence of integers:

50, 96, 98, 107, 26, 1, 9, 2

[4+4+(1+1+5)]

- 9. (a) Write an algorithm to delete an element from a Binary Search Tree. (Include all the cases)
 - (b) Consider the following Binary Search Tree and perform the following operation:
 - (i) delete node 4 (Mention the logic)
 - (ii) delete node 8 (Mention the logic)

[(2+3)+10]

- 10. (a) Define B-Tree. Write the properties of B-Tree.
 - (b) Insert the following into a B-Tree of order 3.

(Mention the logic of each step)

20, 80, 55, 15, 116, 39, 76, 124, 103, 48, 200, 98, 175, 235, 28, 114, 132, 164

[(2+3)+10]

11. Write short notes on any *three* of the following:

 $[3 \times 5 = 15]$

- (a) Heap vs. Priority Queue
- (b) Binary Tree
- (c) Array vs. Linked List
- (d) Big-O Notation
- (e) Insertion Sort