

BRAINWARE UNIVERSITY

Course - MCA

Formal Language and Automata Theory (MCA203)

(Semester - 2)

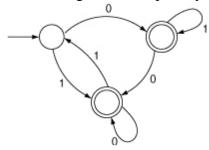
Time allotted: 3 Hours Full Marks: 70

[The figures in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group -A

(Multiple Choice Type Question)

1) Choose the correct alternative for the following: (Any Ten)


10x1=10

- (i) The logic of pumping lemma is a good example of
 - a) The pigeon-hole principle
 - b) The divide and conquer technique
 - c) Recursion
 - d) Iteration
- (ii) A pushdown automaton is different from a finite automaton because of
 - a) A read head
 - b) A memory in the form of stack
 - c) A set of states
 - d) All of these
- (iii) The production grammar $\{S \rightarrow aSbb, S \rightarrow abb\}$ is
 - a) type-3 grammar
 - b) type-2 grammar
 - c) type-1 grammar
 - d) type-0 grammar
- (iv) Consider the following regular expression: R = (ab + abb)*bbab

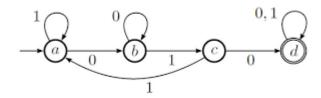
Which of the following is not in the set denoted by R?

- a) ababab
- b) ababbabbab
- c) abbbab
- d) abbabbab

- (v) $a^*(a+b)^*$ is equivalent to
 - a) $a^* + b^*$
 - b) a*b*
 - c) (ab)*
 - d) None of these
- (vi) The class of context free language is not closed under
 - a) Concatenation
 - b) Union
 - c) Intersection
 - d) None of these
- (vii) Which string is not accepted by the following FSA?

- a) 00111
- b) 00110
- c) 01010
- d) 11010
- (viii) The solution of the equation R=Q+RP
 - a) R=QP*
 - b) R=Q*P
 - c) P=RQ*
 - d) R=P
- (ix) If $G = (\{S\}, \{0,1\}, \{S \rightarrow 0S1, S \rightarrow \lambda\}, S)$ the L(G) is
 - a) $0^{n}1^{n} \mid n \ge 0$
 - b) $(01)^n | n \ge 0$
 - c) $0^{m}1^{n}|m,n\geq 0$
 - d) None of these
- (x) By pumping lemma we can prove that a language is
 - a) regular
 - b) is not regular
 - c) Cannot say anything
 - d) None of these.
- (xi) Moore machine output depends on
 - a) Input only
 - b) Input and Present State
 - c) Present State only
 - d) None of these

Group - B


(Short Answer Type Question)

Answer any three of the following

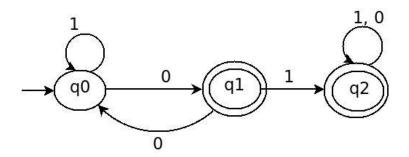
3x5=15

2. Construct the RE corresponding to the state diagram given below:

[5]

- 3. Design a PDA which accepts the language $L=\{ww^R : w \text{ belongs to } (0,1)^*\}$ [5]
- 4. Construct a RE for all the strings of 0 and 1, but not containing the substring 001 [5]
- 5. Write the differences between- [3+2]
 - a) Mealy Machine and Moore Machine
 - b) NDFA and DFA
- 6. Write the production form of different types of grammar.

[5]


Group - C

(Long Answer Type Question)

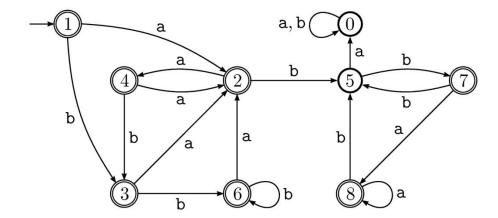
Answer any three of the following

3x15=45

7. a) Give a formal definition of DFA. Construct a DFA from the NFA given below: [3+5]

b) Let the production rules of a grammar G is given below:

$$X \to X + X | X * X | X | a$$
 [2+2+3]


Find out the following for the string "a+a*a"

- (i) Leftmost derivation
- (ii) Rightmost derivation
- (iii) Parse tree and decide whether the grammar is ambiguous or not.
- 8. a) Construct a FA equivalent to the RE : (0+1)*(00+11)*(0+1)*. Show all [7] steps
 b) Define Pumping lemma. Show that the language L={aⁿ | n is prime}is not
 - b) Define Pumping lemma. Show that the language $L=\{a^n\mid n \text{ is prime}\}$ is not regular
- 9. a) Why simplification of CFG is necessary? [2]
 - b) Convert the following CFG to CNF: $S \rightarrow -S \mid [S \cap S] \mid p \mid q$ [7]
 - c) Remove the Null production from the following CFG [6]

 $S \rightarrow ABd$ $A \rightarrow a \mid \lambda$ $B \rightarrow b \mid \lambda$

10. Minimize the following DFA by Myhill Nerode theorem

[15]

11. Write Short Notes of the following (Any three)

[3x5]

- a) Ambiguous Grammar
- b) Components of PDA
- c) Arden's Theorem and Proof of the theorem
- d) Finite State Automata with Output