

Brainwer: Promity
Barasat, Kanada -700125

BRAINWARE UNIVERSITY

Term End Examination 2021 - 22
Programme – Bachelor of Science (Honours) in Computer Science
Course Name – Mathematics-III
Course Code - GEBS302
(Semester III)

	(Semester III)	
Time: 1 Hr.15 Min.		
[The figure in	n the margin indicates full marks.]	Full Marks : 60
	Group-A	
(Multi	ple Choice Type Question)	
Choose the correct alternative from the	e following:	1 x 60=60
(1) Which of the following is a polynor	mial of degree zero?	
a) a(≠0)	b) 0	
c) x	d) None of these	
(2) If $f(x)$, $g(x)$ are polynomials of deg $f(x)g(x)$ is	gree m and n respectively. Then the degree	of
a) mn	b) m+n	
c) undefined	d) None of these	
(3) If $x - \alpha$ is a factor of $f(x)$ then va	lue of $f(\alpha)$ is	
a) 1	b) 0	
c) No conclusion	d) None of these	
(4) If $p(x) = ax^2 + bx + c$ is a polynomial	of degree 2, then $\frac{c}{a}$ is equal to	
a) 0	b) 1	
c) Sum of zeroes	d) Product of zeroes	
(5) A polynomial of degree n have	5, 1 104401 01 201003	
a) only I zero	b) exactly n zeroes	
c) at most (n-1) zeroes	d) more than n zeroes	
(6) The degree of $p(x) = x + \sqrt{x}$ is	and that it zeroes	
a) 0	b) 2	
c) 4	d) Degree not assigned to it	

c) cannot be expressed	b) 2(2,3)+1(3,5)
	d) None of these
(19) $S = \left\{ \begin{pmatrix} x_1 & 0 \\ 0 & x_2 \end{pmatrix} x_1, x_2 \in R \right\}.$ then dim(S) is	Brainwere (Iniversity
a) 2	b) 3
c) 5	d) None of these
(20) The vectors (2,1,0),(1,1,0),(4,2,0) of R ³ are a) linearly dependent	
c) linearly independent but not a basis	b) basis
(21) Which of the following is not a subspace of R	d) None of these
a) $\{(x,0): x \in R\}$	
La disclosing a	b) $\{(0, y) : y \in R\}$
c) $\{(x,1): x \in R\}$	d) $\{(x, y): x = y; x, y \in R\}$
(22) Let V and W be two vector spaces and T: V - ive if and only if	is a linear mapping, then T is inject
a) Ker $T=\{\theta\}$	b) Ker T={0}
c) Ker T=V	d) None
(23) Let V and W be two vector spaces and T: V = e null vectors of V and W respectively, then	is a linear mapping and $\theta \cdot \theta^1$ be th
a) Ker $T = \{\alpha \in V \mid T(\alpha) = \theta\}$	b) Ker $T = \{\alpha \in V \mid T(\alpha) = \theta^1\}$
c) Ker $T = \{\alpha \in V \mid T(\alpha) = \alpha\}$	d) None of these
(24) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation define the dimension of the nullspace of T is	ned by $T(x,y,z) = (x-y,x-z)$, then t
a) 0	b) 1
c) 2	d) 3
(25) If S is a subspace of a vector space $(V,+,.)$ over ers. Then which of the following statement is fall	er R, where R is the set of all real numb
a) $\alpha + \beta \in S$ whenever $\alpha, \beta \in S$	b) $\alpha + 2\beta \in S$ whenever $\alpha, \beta \in S$
c) $-\alpha + \beta \in S$ whenever $\alpha, \beta \in S$	d) None of these are false
(26) A vector space V is finite dimensional if it has	and raise
a) finite basis	b) finite elements
c) no basis	d) None of these
(27) In a vector space V over R. Let $\alpha \in V$ and $\alpha \in R$	Raman and these
a) $a\alpha \in V$	
c) $\alpha^2 \in V$	b) $a+\alpha \in V$ d) $a \in V$
(28) Which of the following is not linear transformati	Tr. A. Tribing and the control of th
a)	
	b)

$$T: \mathbb{R}^3 \to \mathbb{R}^2: T(x, y, z) = (3x+1, y-z)$$

T(x, y) = (3x - y, 2x)c) $T: R \to R^2: T(x) = (5x, 2x)$

- d) $T: \mathbb{R}^3 \to \mathbb{R}^2: T(x, y, z) = (x, 0, z)$
- (29) Let I be the identity transformation of the finite dimensional vector space V, then the nullity of I is
 - a) dim(V)

b) 0

c) 1

d) dim(V) - 1

(30) Let $T: V \to W$

be a liner transformation and rank(T)=m, then

a) $\dim(V) = m$

b) $\dim(\text{Ker }T) = m$

c) dim(Im T) = m

d) dim(W) = m

(31)

$$M_1: T: \mathbb{R}^3 \to \mathbb{R}^2, T(x, y, z) = (y-1, x+z)$$

$$M_2: T: \mathbb{R}^2 \to \mathbb{R}, T(x,y) = 2xy$$

$$M_3: T: \mathbb{R}^3 \to \mathbb{R}^2, T(x, y, z) = (|y|, 0)$$

Consider the mapping

Which of the above is a linear transformation?

a) only M_2 and M_3

b) only M_3

c) all M_1, M_2 and M_3

- d) None of these
- (32) Which of the following is the linear transformation from R^3 to R^2 ?

$$f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ x + y \end{pmatrix}$$

$$g\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} xy \\ x+y \end{pmatrix}$$

(ii)

$$h \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z - x \\ x + y \end{pmatrix}$$

(iii)

- a) only f
- c) only h

- b) only g
- d) all the transformations f,g,h
- (33) Which of the following subsets of R4?

$$B_1 = \{(1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,1)\}$$

$$B_2 = \{(1,0,0,0),(1,2,0,0),(1,2,3,0),(1,2,3,4)\}$$

$$B_3 = \{(1, 2, 0, 0), (0, 0, 1, 1), (2, 1, 0, 0), (-5, 5, 0, 0)\}$$

Brainware University Bernsel, Kersate - 700 per

a) B₁ and B₂ but not B₃

b) B_1 , B_2 and B_3

c) B_1 and B_2 but not B_2

- d) All of B₁ B₂ and B₃
- (34)

 Let $V = M_{2,2}$. The coordinate vector [A] of

$$A = \begin{bmatrix} 3 & -5 \\ 6 & 7 \end{bmatrix}$$
 relative to S where

$$S = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right\}_{is}$$

- a) [7,-1,-13,10]
- c) [-7,1,13,-10]

- b) [7,1,13,10]
- d) Both [7,-1,-13,10] and [-7,1,13,-10]
- (35) Let be subspaces of a vector space V having dimensions m and n, respectively, where m > n, then
 - a) $\dim(W_1 \cap W_2) = n$

b) $\dim(W_1 \cap W_2) = m$

c) $\dim(W_1 \cap W_2) \leq n$

- d) $\dim(W_1 \cap W_2) \leq m$
- (36) Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(a_1, a_2) = (a_1, -a_2)$. Then
 - a) T is called the reflection about the y-axis
- b) T is called the reflection about the x-axis
- c) T is called the projection on the x -axis
- d) T is called the projection on the y-axis
- (37) Let V and W be vector spaces, and let $T: V \to W$ be linear. If V is finite-dimensional, then
 - a) nullity(T) rank(T) = dim(V)
- b) $\operatorname{nullity}(T) + \operatorname{rank}(T) = \dim(V)$
- c) $\operatorname{nullity}(T) \operatorname{rank}(T) < = \dim(V)$
- d) $\operatorname{nullity}(T) + \operatorname{rank}(T) \le \dim(V)$
- (38) Let V and W be vector spaces, and let $T: V \to W$ be linear. If $N(T) = \{0\}$ then
 - a) T is injective

b) T is surjective

c) T is bijective

- d) Can not be decided
- (39) Let V and W be finite dimensional real vector spaces. Let $T: V \to W$ be a linear trans formation. If rank of T is 3 and nullity of T is 4, the dimension of V is
 - a) 7

b) 3

c) 4

d) 1

	Broat western
(40) If A ² =A, then its Eigen values are either	Summer , M. Contraction
a) 0 or 2	b) 1 or 2
c) 0 or 1	d) Only 0
(41) If ∠≠0 is an Eigen value of a matrix A then the	matrix A^T has an Eigen value
	b) -2
c) 1	1)
$\frac{c}{\lambda}$	Can Not be determined
(42) If A has an Eigen vector v and $A=P^{-1}BP$ then B has	Fire vester
2)	$P^{-l}v$
c) y	v^{-1}
(43) If α is an Eigen value and ν is the corresponding ch of the following is false	Eigen vector of a matrix A then whi
a) $Av = \alpha I$	$Av = \alpha v$
c) 4-1 1	
$A V = \frac{1}{\alpha} V$	Any one of these is false
$(44) \ _{16} \cdot V = \mathbf{p}^{3}$	
(44) If $V = R^3$ be equipped with inner product $(x, y) =$	$x_1y_1 + 2x_2y_2 + 3x_3y_3$. In this inner p
	- Interp
	$u = \begin{bmatrix} 1 \\ 1 \\ \frac{1}{\sqrt{3}} \end{bmatrix}, v = \begin{bmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$
	$u = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, v = \begin{bmatrix} \frac{1}{2} \end{bmatrix}$
roduct space (V ())	$\lfloor \sqrt{3} \rfloor = \frac{1}{6}$
roduct space (V.()) then the value of the inner p	roduct of [√3]
a) $\frac{2}{\sqrt{2}}$	
√2	$2\sqrt{2}$
c) 2	
d)	$\frac{\sqrt{3}}{2}$
44.50	2
(45) If λ is the only Eigen value (real or complex) of λ	an n×n matrix A 4
n'i	λ" then det A=
c) nh	
(40)	nλ ⁿ⁻¹
$A = \begin{pmatrix} 1 & 1 & -1 \\ -2 & 3 & 0 \\ -2 & 1 & 2 \end{pmatrix}.$	
$A = \begin{bmatrix} -2 & 3 & 0 \end{bmatrix}$	
is the eigen vector	Corresponding
a) (0,1,1)	corresponding to the eigen value 3
, ()-,-)	(1,2,1)
(47)	None - C.
(47)	None of these
$A = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$))
$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \dim \left\{ span \left[\begin{cases} 1 \\ 0 \\ 1 \end{cases}, \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right] \right\}$ Let	= 1221 ippotentionit, sheet and of an
Let then $(((1)(2)(1)$)) Constant ten Car Thodeson be
a) 1	
b)	2
3)	트레스 대통하다 18. 이번 10.

			×
_	×		7
3	1		ú

d) 0

(48) An orthogonal matrix A has eigen values of 1, 2 and 4. The trace of the matrix A^T is

a) 7/4

b) 1/7

c) 7

d) 4/7

(49) Consider the inner product space of all polynomial of degree less than or equal to 3 an

 $f(x).g(x) = \int_{-1}^{1} f(x)g(x)dx$ d the inner product

LINDAT

a) 1/4

then the value b) 1/5

nware University

c) 2/5

d) 0

(50) If a line makes angles 90°, 135°, 45° with the x, y and z-axes respectively, then its direction cosines are

a) $0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$

b) $0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}$

c) 0,-1,1

d) 0,1,-1

(51) If a line has the direction ratios - 18 12 -4 then what are its direction cosines?

a) $\frac{9}{11} \cdot \frac{6}{11} \cdot \frac{2}{11}$

b) $-\frac{9}{11}, -\frac{6}{11}, -\frac{2}{11}$

c) $-\frac{9}{11}, \frac{6}{11}, -\frac{2}{11}$

d) None of these

(52)

a) 1,0,0; 0,1,0; 0,0,1

b) 0,1,1; 1,0,1; 1,1,0

c) 1,1,1; 1,1,0; 1,0,0

d) None of these

(53) If a line has direction ratios 2, -1, -2, then its direction cosines will be

a) $\frac{2}{3}, \frac{1}{3}, \frac{2}{3}$

b) $\frac{2}{3}$, $-\frac{1}{3}$, $-\frac{2}{3}$

c) $-\frac{2}{3}, \frac{1}{3}, \frac{2}{3}$

d) None of these

Two straight lines with direction cosines $l_1, m_1, n_1 \text{ and } l_2, m_2, n_2$ are parallel if

a) $l_1 l_2 + m_1 m_2 + n_1 n_2 = 0$

b) $\frac{l_1}{l_2} + \frac{m_1}{m_2} + \frac{n_1}{n_2} = 0$

c) $\frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2}$

d) $l_1 l_2 = m_1 m_2 = n_1 n_2$

(55) Let PQ be the line through the points (4, 7, 8) and (2, 3, 4), XY be the line through the points, (-1, -2, 1) and (1, 2, 5).

a) PQ & XY are perpendicular

b) PQ & XY are parallel

c) PQ & XY are same line

d) None of these

(56) Equation of the straight line passing through (x_1,y_1,z_1) and (x_2,y_2,z_2) is

a) $\frac{x-x_1}{x_1-x_2} = \frac{y-y_1}{y_1-y_2} = \frac{z-z_1}{z_1-z_2}$

b) $\frac{x-x_1}{y_1-y_2} = \frac{y-y_1}{z_1-z_2} = \frac{z-z_1}{x_1-x_2}$

c)
$$\frac{x-x_1}{z_1-z_2} = \frac{y-y_1}{x_1-x_2} = \frac{z-z_1}{y_1-y_2}$$

d) None of these

(57)

$$\frac{x+3}{3} = \frac{y-1}{5} = \frac{z+3}{4}$$
 and $\frac{x+1}{1} = \frac{y-4}{1} = \frac{z-5}{2}$

The angle between the pair of lines

a)
$$\cos^{-1}\left(\frac{8}{5}\right)$$

b)
$$\cos^{-1}\left(\frac{8\sqrt{3}}{15}\right)$$

c)
$$\cos^{-1}\left(\frac{8\sqrt{3}}{5}\right)$$

d)
None of these are false

(58)
$$\frac{x-5}{7} = \frac{y+2}{-5} = \frac{z}{1} \text{ and } \frac{x}{1} = \frac{y}{2} = \frac{z}{3}$$
 are

a) perpendicular

b) parallel

c) same line

d) None of these

$$\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$$
 and $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$

The shortest distance between the lines is

b)
$$-\sqrt{29}$$

c) ₂
$$\sqrt{29}$$

d)
$$-2\sqrt{29}$$

(60) The coordinates of the foot of the perpendicular drawn from the origin to the plane 2x - 3y + 4z - 6 = 0

a)
$$\left(\frac{12}{29}, \frac{18}{29}, \frac{24}{29}\right)$$

b)
$$\left(-\frac{12}{29}, \frac{18}{29}, \frac{24}{29}\right)$$

c)
$$\left(\frac{12}{29}, -\frac{18}{29}, \frac{24}{29}\right)$$

d)
$$\left(\frac{12}{29}, \frac{18}{29}, -\frac{24}{29}\right)$$

