

BRAINWARE UNIVERSITY

Term End Examination 2018 - 19

Programme- B.Tech.(CSE) / B.Tech.(ECE) Course Name - Linear Algebra & Differential Equations Course Code -BSC(CSE)201 / BSC(ECE)201

(Semester - 2)

Time allotted: 3 Hours Full Marks: 70

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group -A

(Multiple Choice Type Questions)

 $10 \times 1 = 10$

- 1. Choose the correct alternative from the following:
- (i) Gauss Elimination method reduces the coefficient matrix into a/an ______ matrix.
 - a. diagonal

b. upper triangular

c. lower trianglar

- d. symmetric
- (ii) The matrix $\begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 1 \\ 4 & 5 & -3 \end{bmatrix}$ is
 - a. singular

b. non-singular

c. invertible

- d. both b. and c.
- (iii) For the linear transformation $T: V \to W$, Rank(T) =
 - a. dim(V)

b. dim(W)

c. dim(Ker(T))

- d. dim(Im(T))
- (iv) The transformation $T: R \to R$ defined by T(x) = sinx is
 - a. linear

b. non-linear

c. neither a. nor b.

- d. both a. and b.
- (v) The eigenvalues of the matrix $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ are
 - a. 0, 2

b. 1.1

c. -1, -1

d. none of these

- For any two vectors \overline{u} , \overline{v} in a Euclidean space, (vi)
 - a. $|\langle \overline{u}, \overline{v} \rangle| = ||\overline{u}|| ||\overline{v}||$
- b. $|\langle \overline{u}, \overline{v} \rangle| \ge ||\overline{u}|| ||\overline{v}||$
- c. $|\langle \overline{u}, \overline{v} \rangle| \leq ||\overline{u}|| ||\overline{v}||$
- d. none of these
- The orthogonal trajectory of the hyperbola xy = c is (vii)
 - a. $x^2 y^2 = C$

b. $x^2 + y^2 = C$

c. $x^2 = Cv^2$

- d. none of these
- The transformed equation of (viii)

$$x^{2} \frac{d^{2}y}{dx^{2}} + 2x \frac{dy}{dx} + 2y = 10\left(x + \frac{1}{x}\right)$$

is

- a. $\frac{d^2y}{dz^2} + 2\frac{dy}{dz} + 2y =$ $10(e^z + e^{-z})$
- b. $\frac{d^2y}{dz^2} + \frac{dy}{dz} + 2y = 10(e^z + e^{-z})$ d. none of these
- c. $\frac{d^2y}{dz^2} + \frac{dy}{dz} + y = 10(e^z + e^{-z})$
- The partial differential equation $xu_x + yu_y = u^2$ is (ix)
 - a. linear

b. non-linear

c. quasi-linear

- d. none of these
- The equation $u_{tt} + u_{xx} = 0$ is of ______ type. (x)
 - a. elliptic

b. parabolic

c. hyperbolic

d. none of these

Group – B

(Short Answer Type Questions)

 $3 \times 5 = 15$

5

Answer any three from the following:

Using the idea of the rank of a matrix, examine if the system of equations 2.

$$3x + y - 5z + 1 = 0$$

$$x - 2y + z + 5 = 0$$

$$x + 5y - 7z = 2$$

is consistent or not.

- Show that the set $B = \{(1,2,1), (0,1,0), (0,0,1)\}$ is a basis of R^3 . Hence express 3. 5 the vector (1,2,3) as a linear combination of the basis vectors.
- Show that the matrix $A = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$ is not diagonalizable. 5
- 5. Solve: $(y^2e^{xy^2} + 4x^3)dx + (2xye^{xy^2} - 3y^2)dy = 0$. Hence find the particular 5 solution if y = 0 at x = 0.

Using the method of separation of variables, solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ where u(x, 0) =5

Group - C

(Long Answer Type Questions) 3x 15 = 45

5

8

2

Answer any three from the following:

Solve the following system of equations by Cramer's Rule: 7.

$$x - 3z = 1$$
$$2x - y - 4z = 2$$
$$y + z = 4$$

Show that the system of equations

$$2x - 2y + z = \lambda x$$

$$2x - 3y + 2z = \lambda y$$

$$-x + 2y = \lambda z$$

can possess a non-trivial solution only if $\lambda = 1$ and $\lambda = -3$. Obtain the general solution for $\lambda = -3$.

- Show that the matrix AA^T is always symmetric.
- Let $R_{2\times 2}$ be the set of all 2×2 matrices with real entries. Show that $R_{2\times 2}$ 7 8. forms a vector space over R.
 - A linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined by 5 $T(x_1, x_2, x_3) = (x_1 - x_2, x_1 + 2x_2, x_2 + 3x_3).$ Find T^{-1} .
 - If $T: V \to W$ be a linear transformation, then show that Ker(T) is a 3 subspace of V.
- 9. Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{bmatrix}$. 9 (a)
 - Use Gram-Schmidt process to convert the basis $\{(1,2,-2),(2,0,1),(1,1,0)\}$ 6 of R^3 into an orthogonal basis and then extend it to an orthonormal basis.
- Use the method of variation of parameters to solve the equation 8 10. (a) $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = e^x \log x$
 - Solve the following system of equations: 7 $\frac{dy}{dx} + 2y - 3z = x$ $\frac{dz}{dx} + 2z - 3y = e^{2x}$

11.	An infinitely long plane uniform plate is bounded by two parallel edges and an end at right angles to them. The breadth is π ; this end is maintained at a temperature u_0 at all points and other edges are at zero temperature. Determine the temperature at any point of the plate in the steady state.	15