

Term End Examination 2018 – 19

Programme - Bachelor of Technology in Computer Science & Engineering

Course Name - Formal Language and Automata

Course Code - BCSE404

(Semester - 4)

Time allotted: 3 Hours Full Marks: 70

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group -A (Multiple Choice Type Questions) $10 \times 1 = 10$ 1. Choose the correct alternative from the following (i) Deterministic Finite State Automaton (DFA) is a simple a. function recognition device b. language recognition device c. routine recognition device d. None of the above Which of the following regular expression represents the language $L=\{a^{2n} \mid n>=0\}$? (ii) b. (aa)* a. (aa)* c. aa*a d. aa*a All notation in Mealy machine are equal to Moore machine with only the difference of (iii) a. Output function b. Initial state c. Output alphabet d. Input alphabet (iv) A pumping lemma is used for proving that

- a. a language is natural b. two regular sets are equivalent
- c. a language is not regular d. a language is recursively enumerable

(v)	Which	of the following statements is true?					
	a.	If a language is context free it can always be accepted by a deterministic push-down automaton	b.	The union of two context free languages is context free			
	c.	The intersection of two context free languages is context free	d.	The complement of a context free language is context free			
(vi)	The se	The set of all strings over $\{0,1\}$ starting with 00 and ending in 11 is					
	a.	0011	b.	00(0+1)*11			
	c.	(00)*(11)*	d.	0*1*			
(vii)	The m	e major limitation of finite automata is					
	a.	They are devoid of memory	b.	They are devoid of memory			
	c.	Their behavior is non deterministic	d.	Their behavior is non deterministic			
(viii)	i) Which of the following in not a regular language over $\{0,1\}$?						
	a.	Set of all strings containing 1110011 as substring	b.	Set of all strings containing 1110011 as substring			
	c.	Set of all strings beginning with 0110	d.	Set of all strings beginning with 0110			
(ix)	(ix) A PDA M simulates left most derivation of a context - free grammar G, if						
	a.	the grammar is ambiguous	b.	the grammar is unambiguous			
	c.	the grammar in CNF	d.	the grammar in GNF			
(x)	The la	AB, $A \rightarrow BC \mid a, B \rightarrow CC \mid b, C \rightarrow a$					
	a.	infinite	b.	empty			
	c.	Both (a) and (b)	d.	None of these			
		Group – B					
		(Short Answer Type C	Ques	tions) $3 \times 5 = 15$			
A	answer a	ny three from the following					
2.	Critically comment on – "Complement of a regular language L is context free" with an example.						

- 3. Verify whether the grammar generates the following string or not. [3+2]
 - a) $S \rightarrow 0B \mid 1A, A \rightarrow 0 \mid 0S \mid 1AA \mid \Box, B \rightarrow 1 \mid 1S \mid 0BB$ String - '00110101'
 - b) $S \rightarrow aAb, A \rightarrow aAb \mid \Box$ String – 'aabbb'
- 4. Write a brief note on Chomsky classification of grammars. [5]
- 5. Remove left recursion from the following grammars [2+3]
 - (a) $A \rightarrow ABa \mid Aa \mid a$
 - (b) $A \rightarrow AC \mid Aad \mid bd \mid c$
- 6. What do you meant by Ambiguous Grammar? Why the grammar with [2+3] productions $S \rightarrow SS \mid aSb \mid \lambda$ is an ambiguous grammar?

Group - C

(Long Answer Type Questions)

 $3 \times 15 = 45$

Answer any three from the following

7. Find the minimum DFA for the following diagram [15]

- 8. a) What do you mean by Context Free Languages? [5]
 - b) Construct a context free grammar G generating all integers with sign. Use the grammar to obtain -35
 - c) Let G={V,T,P,S} be given by the productions [5]
 S → AB , A → a , B → b , B → C , E → c . Find G' such that every variable in G' derives some terminal string.
- 9. (a) Explain the different types of methods of acceptance by Push Down [5] Automata.
 - (b) Construct a Push Down Automata accepting $\{a^{m+n}b^mc^n \mid m,n>=1\}$ by Final [10] state.
- 10. (a) Define Greibach Normal Form and write the steps to convert a given CFG to [1+4] GNF

(b) Convert the following CFG to GNF

[10]

$$S \rightarrow CA \mid BB, B \rightarrow b \mid SB, C \rightarrow b, A \rightarrow a$$

11. (a) Construct a Moore Machine from the given Mealy machine.

[5]

Present	Next State, Output				
State	a=0		a=1		
	State	Output	State	Output	
$\rightarrow q_1$	q_3	0	q_2	0	
q_2	q_1	1	q_4	0	
q_3	q_2	1	q_1	1	
q_4	q_4	1	q_3	0	

(b) Construct a Mealy Machine from the given Moore machine

[3]

Present State	Next	Output	
	a=0	a=1	
$\rightarrow q_0$	q_1	q_2	1
q_1	q_3	q_2	0
q_2	q_2	q_1	1
q_3	q_0	q_3	1

(c) Design a Turing machine to recognize $\{0^n1^n2^n \mid n \ge 1\}$

[7]
