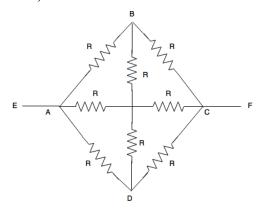


BRAINWARE UNIVERSITY

Course-BSc(CS)

Introduction to Electrical circuits and Basic Electronics I (BCSG101)


(Semester - 1)

Time allot	ted: 3 Hours				Full Marks : 70	
[The figure	in the margin i		arks. Candidate rds as far as pra	-	o give their answers in	
		(Group –A			
		(Multiple	Choice Type Q	uestion)		
1. Choose the	$1 \times 10 = 10$					
i) The hystere	esis curve of a	magnetic mater	rial is generally	studied for		
a) diamagnet	ic materials	b) ferromagneti	ic materials			
c) dielectric r	naterial d)	paramagnetic n	naterials			
ii) The peak v	voltage in a 220	V AC source	is			
a) 220 V	b) about 160	V	c) about 310	V	d) 440 V	
· •		•	ce 'C' and breaked the combination	_	" are joined in series.	
a) 2C & 2V	b) C & 2V	c) 2C & V	d) C/2 & 2V			
iv) A Si diode	e operating at r	oom temperatu	re has the rever	se saturation cu	rrent in the order of	
a) mA	b) µA	c) nA	d) A			
v) In unbiase	d p-n junction,	total current is	zero because			
a) potential b	arrier does not	exist	b) no carrier flow across the junction			
c) equal & op	posite carriers	d) potential barrier becomes infinite				

vi) Which of heated due to		- 1	uantities	do not	change	when a re	esistor con	nected to	a battery is
a) drift veloc	ity	b) res	sistivity	c) resi	stance	d) numb	er of free	electrons	
vii) If 'ω' is the proportional		of the o	lepletion	n region	, their tı	ransition o	capacitanc	e of a p-1	n junction is
a) $\frac{1}{\omega}$	b) ω		c) $\frac{1}{\sqrt{\omega}}$	d) $\sqrt{\omega}$					
viii) Three ca capacitance,	-	-		•	ch are av	vailable. T	The minim	um and	maximum
a) 6µF, 18µ1	F	b) 3μF	F, 12μF		c) 2µF,	12μF	d) 2	μF, 18μF	7
ix) What is the	ne unit c	of CR w	here 'C'	is capac	itance o	f capacito	or and 'R' i	s resistar	nce of resistors
a) Sec	b) Oh	m	c) henr	У	d) none	e of these			
x) The power	r of AC	circuit i	s maxim	um wh	en the va	alue of po	wer factor	ris	
a) $\sqrt{2}$ b) 1		c) 2	d) $\frac{1}{\sqrt{2}}$						
xi) In BJT, I	= 10 m	A for I _b	=100 μΔ	A, the a	pproxim	nate value	of β is		
a) 100	b) 10		c) 1000)	d) 1				
xii) The type	of a ser	nicondu	ctor n ty	pe or p	type car	n be ident	ified by u	sing	
a) Early effec	et	b) tuni	nel effec	:t	c) photo	o voltaic	effect	d) Ha	ıll effect
xiii) If $\alpha = 0.9$	99 then	β equals	S						
a) 9.9	b) 0.9	9	c) 99		d) 199				
xiv) To prod	luce sign	nificant	current i	n a Si d	liode, the	e forward	voltage n	nust exce	ed
a) 0.3 V	b) 0.7	V	c) 2mV		d) 26 i		26 mV		
				G	roup –	- B			
			(Sł	ort Ans	swer Ty	pe Questi	on)		
			Ansv	ver any	three of	the follo	wing.		$3 \times 5 = 15$
2. Explain th down.	e action	of Zene	r diode,	illustra	ting bot	h avalanc	he break d	own and	Zener break 5

3. (i) State the principle of action of Light emitting diode (LED).	3					
(ii) The band gap of GaAsP is 1.98 eV. Determine the wavelength of electromagnetic emitted upon direct recombination of electrons and holes in the sample (Take $c=3x$ and $h=6.626x\ 10^{-34}\ Js$)						
4. By using Hysteresis loop mention the differences of soft iron and steel.	5					
5 . Describe DIAC						
6. What is time constant? Find the value of time constant of L-R circuit.						
7. State Kirchhof's current and voltage laws and explain those.	5					
Group – C						
(Long Answer Type Question)						
Answer any <i>three</i> of the following. 3 x 15 =	= 45					
8. a) Illustrate differentiation of insulators, metals and semi conductors in the frame work band theory.	rk of 6					
b) Deduce the following relation for a semi conductor						
$J=e~E~(~n_p~\mu_p+n_e~\mu_e),$ where notations have their usual significance	6					
c) At 300 K, Ge has intrinsic concentration of 2.5×10^{19} m ⁻³ . If electron mobility is 0. and hole mobility is 0.18 m ² /Vs, calculate the electrical conductivity of intrinsic Ge.						
9. a) Drawing the circuit diagram of a full wave rectifier , using p-n junction diodes, exaction. Illustrate the use of filter in this context. Define (i) PIV rating and (ii) Ripple fact 5+	-					
b) Describe Photo diode.	5					

- 10. a) Write Faraday's laws of electromagnetic induction. Distinguish between self and mutual inductance.
 - (b) What is the equivalent resistance between the points E and F of the given network? (Where, $R = 3\Omega$)

- c) Write the effect of different factors on resistance of a resistor. What is the unit of resistivity? 3+2
- 11. a) Explain different current components of a transistor.
- b) A n-p-n transistor is operating in CE mode. Calculate V_{CE} if β = 125. Take V_{BE} = 0.6V, V_{BB} (base supply voltage)= 10 V, V_{CC} (collector supply voltage)= 20 V, R_B = (series resistance in base circuit)= 310 k Ω and R_C =(series resistance in collector circuit)= 5 k Ω .
- c) For a transistor, I_C = 7mA, I_{co} =25 μA and I_B =0.1mA, calculate α , β and I_E , where notations carry their usual meanings
- 12. a) In alternating emf fed circuit containing inductance (L) and resistance (R) in series, show that current (I) is lagging behind emf by an angle (Θ).
- b) A coil containing resistance 50.0Ω and inductance 0.50 henry is connected to an AC source of 110 V, 50.0 cycle/s. Find the impedance and power factor of this coil.
- c) What is band width of series LCR circuit. Write down the expression of Q factor of circuit in terms of bandwidth and series resonant frequency.