

BRAINWARE UNIVERSITY

Course – MCA

Discrete Mathematics (MCA104)

(Semester - 1)

Time allotted: 3 Hours

Full Marks : 70

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group –A

(Multiple Choice Type Question)

- 1. Choose the correct alternatives for any ten of the following: $1 \times 10 = 10$
 - i) If a set $S = \{1, 2, 3\}$, then the power set of S is

 $a)\;\{\,\phi,S\,\}\qquad b)\;\{\,\phi\,\}$

- c) { S } d) None of the above .
- ii) If $f(x) = \cos x$ and $g(x) = x^3$ then, $(f \circ g)(x)$ is
 - a) $(\cos x)^3$ b) $(\cos x^3)$
 - c) cos 3x d) None of the above.
- iii) What is the Cardinality of the Power set of the set {0, 1, 2}.
 a) 8
 b) 6
 c) 7
 d) 9
- iv) Solution of the recurrence relation $a_n = 2\sqrt{2}a_{n-1} 2a_{n-2}$ is

a) $A(2)^n + B(-2)^n$ b) $(A + nB) 2^{n/2}$

c) $A(\sqrt{2})^n + B(-\sqrt{2})^n d$ None of the above.

v) How many onto (or surjective) functions are there from an n-element set to a 2-element set?

- a) 2^n b) $2^n 1$
- c) $2^n 2$ d) $2(2^n 2)$

• \	-	/	\ 7	•
vi)	[~p v ($p \rightarrow q$	$a) \rightarrow$	~p 1s
•••		r r	1/]	P 10

a) Tautology b) Contingency

c) Contradiction d) Valid

vii) In Prime's Algorithm, the weight of non-existing edge is taken as

- a) 0 b) $+\infty$
- c) 1 d) None of the above

viii) If a relation R defined on a strait line set S such that "aRb iff a is perpendicular to b" then the relation is

	a) reflexive	b) symmetric
	c) transitive	d) both a and c
ix)	Power set of empty set has exactly element.	
	a) one	b) two
	c) three	d) four
x)	Cardinality of the set of odd positive integers less than 10 is	
	a) 5	b) 3
	c) 4	d) 6
xi)	The maximum degree of any vertex in a simple graph with n vertices is	

a) n-1	b) n+1
c) $n(n-1)/2$	c) n

Group – B

(Short Answer Type Question)

 $3 \ge 5 = 15$

Answer any **three** of the following

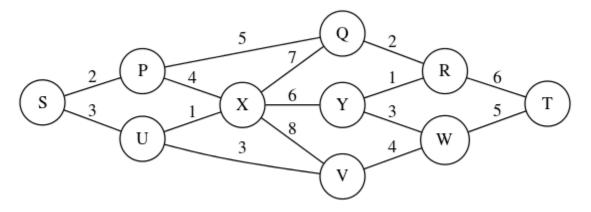
- 2. Draw the Hasse diagram for the set $S=\{1, 2, 3, 4, 6, 8, 12, 16, 24, 48\}$ where the relation is divisibility.
- 3. Prove that A X (B U C) = (A X B) U (A X C). (Without using Venn diagram)
- 4. There are 30 players in a group.10 play soccer, 12 play tennis, 15 play golf. 3 players play both soccer and tennis. 5 players play both tennis and golf. 4 players play both soccer and golf. 2 play all three games.

i) Find how many play only soccer, only tennis and only golf.

ii) Find how many play none.

5. Solve the following recurrence relation f(n) = f(n-2), f(0) = 1 and f(1) = 6

Group – C


(Long Answer Type Question)

 $3 \ge 15 = 45$

Answer any **three** of the following

- 6. i) A mapping function f: $Q \rightarrow R$ is defined as $f(x) = x/(x^2 2)$, $x \in Q$ show that f is surjective but not injective.
 - ii) Solve the following system of equations by Matrix inversion method.

7. i) Consider the following graph and find the shortest path by Dijkstra's algorithm between S to T.

ii) Find the rank of the following matrix.

$$\begin{bmatrix} 9 & 13 & 5 & 2 \\ 1 & 11 & 7 & 6 \\ 3 & 7 & 4 & 1 \\ 6 & 0 & 7 & 10 \end{bmatrix}$$

8 + 7

- 8. i)Solve the following recurrence relation f(n) = 4f(n-1) 4f(n-2) 3n + 4, f(0) = 1 & f(1) = 4ii) Find CNF for $(\sim (p \rightarrow q) \leftrightarrow (\sim r \lor p)) \rightarrow q$ 10 + 5
- 9. i) A relation R defined on a set Z such that "a R b iff 5a + 7b is divisible by 12" show that R is equivalent.

ii) Define minimal Spanning tree , Connected graph and Complete graph 6+9