Full Marks: 70

BRAINWARE UNIVERSITY

Course - MSc(HN)

Principles of Basic Electronics (MHN104)

(Semester - 1)

Time allotted: 3 Hours

a) NOT gate

b) OR gate

[The figure	in the margin in		marks. Cand vords as far a		quired to give their e.]	answers in		
			Group -	4				
		(Multiple	e Choice Typ	e Question)				
1. Choose the correct alternatives for any <i>ten</i> of the following:								
i) Ripple facto	or of half wave	rectifier is						
a) 0.52	b) 1.21	c) 0.48	d) 1					
ii) Most lightl	y doped region	in BJT is th	ie					
a) emitter	b) base	c) collector	d) none	of these				
iii) When a tr	ansistor is used	as switch, i	t operates be	tween				
a) saturation d	& active region	b) active & cut-of	f region					
c) saturation of	& cut-off region	d) none of these						
iv) If reverse	bias across a p-	n junction is	s increased, the	ne width of	depletion region			
a) increases	b) decreases	c) r	emains unch	anged	d) not applicable			
v) To produce	e significant cur	rent in a Si	diode, the for	ward voltag	ge must exceed			
a) 0.3 V	b) 0.7V	c) 2	2mV	d) 26	mV			
vi) A p-type s	emiconductor i	s						
a) positively charged		b) negative	ely charged					
c) uncharged		d) uncharged at 0K but charged at higher temperature.						
vii) An AND	gate can be pre	pared by rep	petitive use o	f				

c) NAND gate

d) none of these

viii) The elect	rical conductiv	ity of p	ure gern	nanium	can be incre	eased by		
a) increase of temperature				b) doping acceptor impurities				
c) doping donor impurities			d) all of these					
ix) The binary	equivalent of	decimal	numbe	r 14 is				
a) (100101) ₂	b) (1110) ₂	c) (101	$(11)_2$		d) (1101) ₂			
x) $A + A B$	equals							
a) A	b) B	c) \overline{A}	d) \overline{B}					
xi) How many NAND gates are required to make an AND gate								
a) 2	b) 3	c) 4		d) 5				
xii) The dynamic resistance (r) of a p-n junction depends on forward current ' I' as								
a) $r \propto I$	b) $r \propto \frac{1}{I}$	c) $r \propto \frac{1}{}$	$\frac{1}{\overline{I}}$ d) $r \propto r$	\sqrt{I}				
xiii) IC74150	is a							
a) 8 to 1 multiplexer b) 8 to 1 demu				ultiplex	er			
c) 16 to 1 multiplexer d) 16 to 1 dem			nultiplex	ker				
			G	roup -	- B			
		(Sh	ort Ans	wer Ty	pe Question)		
		Answ	er any a	three of	the following	ng.	$3 \times 5 = 15$	
2.Draw the Fe	ermi distributio	n curve	for T=	OK and	$T > 0K$. Ex_1	plain their signific	ance.	
3.Why NOR §	gate is called un	niversal	gate?					
4. Write differ	ence between p	type ar	nd n typ	e semic	onductor. G	ive their band dia	gram.	
5. Simplify th	e given boolea	n expres	ssionY=	AB+ AC	$+A\overline{B}C(AB+C)$	C)		
6. Draw the circuit diagram of a n-p-n transistor in CE mode. Draw the input and output characteristics of a n-p-n transistor in CE mode. For the output characteristics, show the saturation, active & cut-off regions.								

Group-C

(Long Answer Type Question)

Answer any <i>three</i> of the following. 3 x 15	= 45				
7. a) What is mobility, drift velocity and conductivity of intrinsic semiconductor and also the total conductivity of intrinsic semiconductor. 1+1+					
b) The resistivity of pure silicon is 2300 ohm-meter and the mobilities of electrons and holes in it are 0.135 and 0.048 meter ² / volt-sec respectively. Find the electron and hole concentrations, and the resistivity of a specimen of silicon doped with 10^{19} atoms of phosphorous per meter ³ . 6					
c) Write short note on solar cell.	3				
8.a) Differentiate between positive and negative logic system.	3				
b) Explain how the basic gates can be realized using NAND gate.	6				
c) Implement $Y = (A + C)(A + \overline{D})(A + B + \overline{C})$ using NOR gate only.	6				
9.a) What is multiplexer? Draw logic diagram of 4 to 1 multiplexer.	1+4				
b) Design half adder using only NAND gate.	4				
c) Write short note on Full subtractor.	3				
d) For copper at 1000k, find the energy at which the probability $f(E)$ that a conduction electron state will be occupied, is 0.90. (For copper E F = 7.00 eV, K B = 8.6 x 10 -5 eV/K.					
10. a) Explain the action of Zener diode, illustrating both avalanche break down and Zene down.	er break 5				
b) Drawing the circuit diagram of a full wave rectifier, using p-n junction diodes, explain action. Define ripple factor and also find the value of ripple factor.	n its 5+2+3				
11. a) Convert the decimal number 53.625 into an equivalent binary number.	3				
b) State De Morgan's theorem.	3				
c) If $A\overline{B} + \overline{A}B = C$, showthat $A\overline{C} + \overline{A}C = B$	5				
d) How are the AND multiplication different from ordinary multiplication and OR additional different from the ordinary addition method?	on 2+2				