

BRAINWARE UNIVERSITY

Course - BCA

Discrete Mathematics (BCAC102)

(Semester - 1)

Time allotted: 3 Hours Full Marks: 70

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group -A

1. <i>A</i>	Answer	any	TEN	from	the	foll	owing	questi	ons
--------------------	--------	-----	-----	------	-----	------	-------	--------	-----

 $1 \times 10 = 10$

- Two sets are called disjoint if there ______ is the empty set. i.
 - a) Union
 - b) Difference
 - c) Intersection
 - d) Complement
- The set O of even positive integers less than 10 can be expressed by _____. ii.
 - a) $\{1, 2, 3\}$
 - b) {2, 4, 5, 6, 8}
 - c) $\{2, 4, 6, 8\}$
 - d) {1, 2, 3, 10}
- iii. Which is the correct statement about the function f(x) = 3x - 2 if $f: Z \to Z$
 - a) f(x) is one-to-one and onto
 - b) f(x) is not one-to-one but onto
 - c) f(x) is one-to-one but not onto
 - d) f(x) is neither one-to-one nor onto
- The relation $\{(1,1), (1,3), (2,1), (2,2), (3,3), (3,2)\}$ is iv.
 - a) Reflexive
 - b) Transitive
 - c) Symmetric
 - d) Asymmetric

- v. In a graph if e=[a, b], Then a and b are called
 - a) Terminal vertex of e
 - b) Adjacent vertices
 - c) Neighbors
 - d) All of above
- vi. If $A = \{\emptyset\}$ then power set of A is _____.
 - a) {}
 - b) $\{\emptyset, \{0\}\}$
 - c) $\{\emptyset, \{\emptyset\}\}$
 - d) None of these
- vii. According to De-Morgan's law $[A \cap (B \cup C)]^c$
 - a) $A^c \cup (B \cap C)$
 - b) $A^c \cap (B^c \cup C^c)$
 - c) $A^c \cup (B^c \cap C^c)$
 - d) None of these
- viii. Solution of $a_n = -a_{n-1}$ is
 - a) $a_n = 5$
 - b) $a_n = n$
 - c) $a_n = 3^n$
 - d) None of these
- ix. Let R be a symmetric and transitive relation on a set A. Then
 - a) R is reflexive and hence a partial order
 - b) R is reflexive and hence a equivalence relation
 - c) R is not reflexive and hence not a equivalence relation
 - d) None of the above
- x. If $A \supseteq B \land B \supseteq C$ then $A \supseteq C$
 - a) True
 - b) False
- xi. An identity matrix is always a square matrix.
 - a) True
 - b) False

Group-B

Answer any THREE from the following:

 $3 \times 5 = 15$

- 2. Define one-to-one, onto and into function with example.
- 3. Verify the following relation defined on set of straight line L is equivalence or not.

$$R = \{(l_1, l_2) : l_1 \text{ is parallel to } l_2, l_1, l_2 \in L\}$$

- 4. Prove that any matrix can be expressed as a sum of symmetric and skew symmetric matrix.
- 5. Define distance and diameter graph. Give an example.
- 6. Obtain the principal CNF of $(P \land Q) \lor (\sim P \land Q) \lor (Q \land R)$

Group - C

Answer any THREE from the following:

 $3 \times 15 = 45$

7. a) Prove the following using mathematical induction:

$$1(1!) + 2(2!) + 3(3!) + \dots + n(n!) = (n+1)! - 1$$

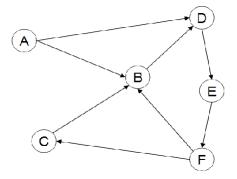
- b) Prove that $[(p \rightarrow q) \land p] \rightarrow q$ is a tautology.
- c) Consider the following

p: Itisraining.

q: The game is cancelled.

Write in simple sentence the meaning of the following:

(i)
$$\sim (p \rightarrow q)$$


(ii)~
$$p \leftrightarrow q$$

6+5+4=15

8. a) Prove the following using Venn diagram.

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

b) Find the adjacency and incidence matric of the following undirected graph.

5+10=15

9. a) Solve the following system of equations using matrix method:

$$x + 2y + 3z = 10$$

$$6x - 4y - 3z = 7$$

$$2x - 3y + z = 1$$

- b) In a competition, a school awarded medals in different categories. 36 medals in dance, 12 medals in dramatics and 18 medals in music. If these medals went to a total of 45 persons and only 4 persons got medals in all the three categories, how many received medals in exactly two of these categories?

 8 + 7
- 10. a) If $A = \begin{bmatrix} 3 & 2 \\ 7 & 5 \end{bmatrix} \land B = \begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix}$, verify that $(AB)^{-1} = B^{-1}A^{-1}$
 - b) Solve the following recurrence relation:

$$f(n) = 4f(n-2) + n - 10, f(0) = 5, f(1) = 8$$