

BRAINWARE UNIVERSITY

Course - BAMW

Discrete Structure (BMWC102)

(Semester - 1)

Time allotted: 3 Hours Full Marks: 70

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group -A

	Give	P M				
	(Multiple Choice	Type Questions)				
			$10 \times 1 = 10$			
1.	Choose the correct alternative from the following					
(i)	The set O of odd positive integers less than 10 can be expressed by					
	a. {1, 2, 3}	b. {1, 3, 5, 7, 9}				
	c. {1, 2, 5, 9}	d. {1, 5, 7, 9, 11}				
(ii)	A is an ordered collection of objects.					
	a. Set	b. Function				
	c. Relation	d. Proposition				
(iii)	The relation $\{(1,2), (1,3), (3,1), (1,1), (3,3), (3,2), (1,4), (4,2), (3,4)\}$ is					
	a. Reflexive	b. Transitive				
	c. Asymmetric	d. Symmetric				
(iv)	If $A = \{1\}$ then power set of S is					
	a. {{}}	b. {Ø}				
	c. {Ø, {1}}	d. None of these				
(v)	The set of real numbers is					
	a. Infinite	b. Subset				
	c. Finite	d. Empty				
(vi)	$(p \rightarrow q) \lor p$ is equivalent to					
	a. T	b. $q \lor p$				
	c F	d a				

(vii)	If A is	s a non-null matrix then (A^{-1})	⁻¹ is equals	S	
	a.	A^{-2}	b.	A^{-1}	
	c.	A	d.	None of these	
(viii)	Identi	ty matrix is always a			
	a.	Null matrix	b.	Square matrix	
	c.	Triangular matrix	d.	None of these	
(ix)	An eq	uivalence relation is transitive	e, reflexive	and	
	a.	Antisymmetric	b.	Symmetric	
	c.	Asymmetric	d.	None of these	
(x)	If n(A	$(A)=7$, $(AUB)=15$ and $(A\cap B)$	=3 then n(I	B) equals	
	a.	21	b.	11	
	c.	25	d.	19	
		(Short Answ (Answer any th	• •		
					$3 \times 5 = 15$
		hort note on bipartite graph.	1		[5]
		partial ordered set. Give an earlil Set, Singleton Set and Pair	-	nt Sat	[5]
		Symmetric and Skew-Symmet		III Set.	[5] [5]
	-	imple Graph and Multi Graph		ample.	[5]
		G	roup – C		
		(Long Answ	_		
		(Answer any th	<i>iree</i> from th	ne following)	0 15 16
7. (a) Prov	we that $A \cap (B \cup C) = (A \cap B)$	U (4 o C)		$3 \times 15 = 45$
`		estruct the truth table of $p \land ($			[5]
		ress the following matrix a		f symmetric and skew	[5]
`	_	metric matrix.		,	
		$\begin{bmatrix} 4 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 0 & -3 \end{bmatrix}$		
		$\begin{vmatrix} 3 \\ -2 \end{vmatrix}$	$\begin{bmatrix} 0 & -3 \\ -1 & 5 \\ 5 & 2 \end{bmatrix}$		
			0 23		[5]
3. (we the following using mather		action:	
		$n^2 + 5$) is always divisible k	-		[7]
(b) Prov	we that $[(p \rightarrow q) \land (q \rightarrow r)] -$	$\rightarrow (p \rightarrow r)$ is	s a tautology.	[8]
9. (a) Obta	ain the principal CNF of ~P	$V(0 \to R)$		[6]

- (b) Prove that $(A \cup B)^c = A^c \cap B^c$ [5]
- (c) If $A = \{1,2,3\}$, $B = \{3,4,5\} \land C = \{4,5,6\}$ then prove that $(A \times B) - (A \times C) = A \times (B - C)$ [4]
- 10. (a) There are 30 players in a group. 10 play soccer, 12 play tennis and 15 play golf. 3 players play both soccer and tennis. 5 players play both tennis and golf. 4 players play both soccer and golf. 2 play all three games. Find how many play only soccer, only tennis and only golf? Find how many play none?

[8]

(b) Prove that the following mapping function $f: R \to R$ is bijective. f(x) = 3x - 5

[4]

(c) What is complete graph? Give an example.

[3]

11. (a) Verify the following relation defined on set of straight line L is equivalence or not.

 $R = \{(l_1, l_2): l_1 \text{ is parallel to } l_2, l_1, l_2 \in L\}$

[6]

Find the degree of each vertex of the given undirected graph. Hence show that sum of degrees of the vertices is twice the number of edge.

[7]

(c) Define regular graph.

[2]