

## **BRAINWARE UNIVERSITY**

## Course -MCA

## **Digital Electronics (MCA101)**

(Semester - 1)

| Time      | allotted: 3 Hours                                                                                                                                                                                                           | Full Marks: 70                                                                                                                                                                                                  |  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| [The      | figure in the margin indicates full marks. Contact their own words as                                                                                                                                                       | Candidates are required to give their answers in far as practicable.]                                                                                                                                           |  |  |
|           | Grou                                                                                                                                                                                                                        | p –A                                                                                                                                                                                                            |  |  |
|           | (Multiple Choice                                                                                                                                                                                                            | Type Question) $10 \times 1 = 10$                                                                                                                                                                               |  |  |
| 1.<br>(i) | Choose the correct alternative from the form the form the form and address bits are needed to sel RAM?                                                                                                                      | following lect all memory locations in the 2118, $16K \times 1$                                                                                                                                                 |  |  |
|           | a. 8.                                                                                                                                                                                                                       | b. 14.                                                                                                                                                                                                          |  |  |
|           | c. 10.                                                                                                                                                                                                                      | d. 16.                                                                                                                                                                                                          |  |  |
| (ii)      | Propagation delay time, t <sub>PLH</sub> , is measured                                                                                                                                                                      | from the                                                                                                                                                                                                        |  |  |
| (iii)     | <ul> <li>a. Triggering edge of the clock pulse to the LOW-to-HIGH transition of the output.</li> <li>c. Preset input to the LOW-to-HIGH transition of the output.</li> <li>Minimum no. of NAND gates required to</li> </ul> | <ul> <li>b. Triggering edge of the clock pulse to the HIGH-to-LOW transition of the output.</li> <li>d. Clear input to the HIGH-to-LOW transition of the output.</li> <li>o design a Full Subtractor</li> </ul> |  |  |
|           | a. 2.                                                                                                                                                                                                                       | b. 2.                                                                                                                                                                                                           |  |  |
|           | c. 15.                                                                                                                                                                                                                      | d. 9.                                                                                                                                                                                                           |  |  |
| (iv)      | On a master-slave flip-flop, when is the master enabled?                                                                                                                                                                    |                                                                                                                                                                                                                 |  |  |
|           | a. When the gate voltage is low                                                                                                                                                                                             | b. When the gate voltage is high                                                                                                                                                                                |  |  |
|           | c. Both of the above                                                                                                                                                                                                        | d. None of the these                                                                                                                                                                                            |  |  |
| (v)       | To make a T flip-flop using JK flip-flop                                                                                                                                                                                    | it requires?                                                                                                                                                                                                    |  |  |
|           | a. J and sorted with clock pulse.                                                                                                                                                                                           | b. J and K both are sorted with a NOT gate.                                                                                                                                                                     |  |  |
|           | c. J and K are sorted with XOR gate.                                                                                                                                                                                        | d. J and K are directly sorted.                                                                                                                                                                                 |  |  |

|        | <ul> <li>a. The logic level at the D input is<br/>transferred to Q on NGT of<br/>CLK.</li> </ul>      | b.       | The Q output is ALWAYS the CLK input if the D input |                   |  |  |
|--------|-------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------|-------------------|--|--|
|        | c. The Q output is ALWAYS identical to the D input when CLK = PGT.                                    | d.       | The Q output is ALWAYS the D input.                 | identical to      |  |  |
| (vii)  |                                                                                                       |          |                                                     |                   |  |  |
|        | <ul> <li>a. Input clock pulses are applied<br/>only to the first and last stages.</li> </ul>          | b.       | Input clock pulses are app<br>the last stage.       | lied only to      |  |  |
|        | <ul> <li>c. Input clock pulses are not used<br/>to activate any of the counter<br/>stages.</li> </ul> | d.       | Input clock pulses as simultaneously to each stage  |                   |  |  |
| (viii) | (viii) How many flip-flops are required to make a MOD-32 binary counter?                              |          |                                                     |                   |  |  |
|        | a. 3.                                                                                                 | b.       | 45.                                                 |                   |  |  |
|        | c. 6.                                                                                                 | d.       | 5.                                                  |                   |  |  |
| (ix)   | (ix) A MOD-16 ripple counter is holding the count 10012. What will be the count after 31              |          |                                                     |                   |  |  |
|        | clock pulses? a. 1000 <sub>2</sub> .                                                                  | h        | 1010 <sub>2</sub> .                                 |                   |  |  |
|        | c. 1011 <sub>2</sub> .                                                                                |          | 1101 <sub>2</sub> .                                 |                   |  |  |
| (x)    | C. 10112.                                                                                             | u.       | 11012.                                              |                   |  |  |
| (A)    |                                                                                                       |          |                                                     |                   |  |  |
|        | a. $[[C(A+B)D]E']$                                                                                    | b.       | [C(A+B)D+E']                                        |                   |  |  |
|        | c. C(A+B)DE.                                                                                          | d.       | ABCDE                                               |                   |  |  |
|        | Conserve                                                                                              | D        |                                                     |                   |  |  |
|        | Group                                                                                                 |          |                                                     |                   |  |  |
|        | (Short Answer Ty                                                                                      | pe Qu    | nestion)                                            | $3 \times 5 = 15$ |  |  |
| Ansv   | ver any <i>three</i> from the following                                                               |          |                                                     |                   |  |  |
| 2.     | <ul><li>(a) Differentiate latch and flip-flop.</li><li>(b) What is digital pulse?</li></ul>           |          |                                                     | [2]<br>[1]        |  |  |
|        | (c) Draw a diagram and specify rise time, f                                                           | fall tir | ne and duration (width)                             |                   |  |  |
|        | of the pulse. (d) What is NGT and PGT?                                                                |          |                                                     | [1]               |  |  |
| 3.     | Draw a 2's complement circuit and test with                                                           | an ex    | ample.                                              | [1]<br>[5]        |  |  |
|        | -                                                                                                     |          | -                                                   |                   |  |  |

(vi) Which statement BEST describes the operation of a negative-edge-triggered D flip-flop?

| <ul><li>4.</li><li>5.</li><li>6.</li></ul> | goin (b) How (a) | What is the function of a D flip-flop that triggers only on positive-g transitions? Illustrate this by drawing the waveforms. It can we perform parallel data transfer by using D flip-flop? In the truth table for 3-bit message which generate odd parity bit. In the circuit for odd parity generator and checker.           | [3]<br>[2]<br>[5]<br>[2]<br>[3] |
|--------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|                                            |                  | Group – C                                                                                                                                                                                                                                                                                                                       |                                 |
|                                            |                  | (Long Answer Type Question)                                                                                                                                                                                                                                                                                                     | 3 x 15 = 45                     |
| Ans                                        | wer aı           | ny three from the following                                                                                                                                                                                                                                                                                                     |                                 |
| 7.                                         | (a)<br>(b)       | Draw the truth table and circuit for 1 to 8 Demultiplexer.<br>The logic expression of the output of a four input digital circuit is given below.                                                                                                                                                                                | [5]                             |
|                                            |                  | $B_3 = \sum_{m} (8, 9, 10, 11, 12, 13, 14, 15)$ $B_2 = \sum_{m} (4, 5, 6, 7, 8, 9, 10, 11)$                                                                                                                                                                                                                                     |                                 |
|                                            |                  | $B_1 = \sum_{m} (2, 3, 4, 5, 8, 9, 14, 15)$ $B_0 = \sum_{m} (1, 2, 4, 7, 8, 11, 13, 14)$                                                                                                                                                                                                                                        |                                 |
|                                            |                  | Simplify the above expressions by using K map and draw the logic circuit using XOR gate only.                                                                                                                                                                                                                                   | [10]                            |
| 8.                                         | (a)              | Draw the diagram for BCD to 7 segment decoder driving a common anode 7 segment LED display (Both the VCC of driver and display are 5V).                                                                                                                                                                                         | [3]                             |
|                                            | (b)              | Each segment of a typical 7 segment LED display is rated to operate at 12mA and 2.5V for normal brightness. Calculate the value of                                                                                                                                                                                              | [3]                             |
|                                            |                  | current limiting resistor needed to produce approximately 12mA per segment (Both the VCC of driver and display are 5V).                                                                                                                                                                                                         | [2]                             |
|                                            | (c)              | $\begin{split} a &= \sum_m (0, 2, 3, 5, 6, 7, 8, 9) + \sum_d (10, 11, 12, 13, 14, 15) \\ b &= \sum_m (0, 1, 2, 3, 4, 7, 8, 9) + \sum_d (10, 11, 12, 13, 14, 15) \\ c &= \sum_m (0, 1, 3, 4,5, 6, 7, 8, 9) + \sum_d (10, 11, 12, 13, 14, 15) \\ d &= \sum_m (0, 2, 3, 5, 6, 8, 9) + \sum_d (10, 11, 12, 13, 14, 15) \end{split}$ |                                 |
|                                            |                  | $e = \sum_{m} (0, 2, 6, 8) + \sum_{d} (10, 11, 12, 13, 14, 15)$<br>$f = \sum_{m} (0, 4, 5, 6, 8, 9) + \sum_{d} (10, 11, 12, 13, 14, 15)$                                                                                                                                                                                        |                                 |
|                                            |                  | $g = \sum_{m} (2, 3, 4, 5, 6, 8, 9) + \sum_{d} (10, 11, 12, 13, 14, 15)$ Draw circuit by simplifying the K map for each output                                                                                                                                                                                                  | [7+3]                           |
| 9.                                         | (a)              | Draw the circuit diagram of a clocked J-K flip-flop using only two                                                                                                                                                                                                                                                              | [5]                             |
|                                            | (b)              | input NAND gates.<br>Implement $Y = (AB)^{f} + A + (B+C)^{f}$ only using NAND gates.                                                                                                                                                                                                                                            | [5]<br>[5]                      |
|                                            | (c)              | Realize $Y=(A+C)(A+D')(A+B+C')$ using NOR gates.                                                                                                                                                                                                                                                                                | [5]                             |

| 10. | (a) | Design a 4-bit ripple counter with block diagram.                       | [2]     |
|-----|-----|-------------------------------------------------------------------------|---------|
|     | (b) | Draw the wave forms of the outputs depending on the input clock         |         |
|     |     | signal and describe the process briefly by drawing the truth table.     | [4+2+2] |
|     | (c) | Comment on the frequency division or frequency scaling of the           |         |
|     |     | above designed ripple counter.                                          | [3]     |
|     | (d) | Why it is called a $MOD - 16$ ripple counter?                           | [2]     |
| 11. | (a) | Define uni - directional, bi- directional and Universal Shift Register? | [1+1+1] |
|     | (b) | List out the capabilities of shift registers.                           | [5]     |
|     | (c) | Draw the circuit diagram of a $4$ – bit universal shift registers.      | [7]     |