

BRAINWARE UNIVERSITY

Course - BCA

Digital Electronics (BCA102/BCAC103)

(Semester - 1)

				<i>'</i>				
Time	Full Marks: 70							
[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]								
	Group –A							
	(Multiple Choice			ype Questions)	$10 \times 1 = 10$			
1.	Choose the correct alternative from the following							
(i)	The 9's complement of $(52500)_{10}$ is							
	a.	47499	b.	46499				
	c.	58500	d.	58599				
(ii)	Minimum number of NAND gates required to implement XOR gate is							
	a.	1	b.	2				
	c.	3	d.	4				
(iii)	Signed 1's complement representation of the number (-13) ₁₀ is							
	a.	10010	b.	11101				
	c.	10011	d.	11100				
(iv)	The octal equivalent of the number $(110010001)_2$ is							
	a.	631	b.	620				
	c.	600	d.	621				

(v)	The packed format in EBCDIC-8 bit format of the numeric value -345 is							
	a.	F3F4F5	b.	F345				
	c.	D3D4D5	d.	345D				
(vi)	The he	The hexadecimal coding of the word "BCA" represented in ASCII 7 bit is						
	a.	404142	b.	414243				
	c.	424344	d.	424341				
(vii)	4 hit P	Parallel Adder can be implemented us	ino					
(111)	a. 3 Full Adders and 1 Half Adder b. 2 Full Adders and 2 Half Adders							
	с.			4 Half Adders	iders			
(viii)		bit sign magnitude representation of						
(VIII)		1 01101	b.					
	a.							
(:)	C.	110010	d.	101010				
(ix)		d state is observed in SR flip flop if	1	C 1D 0				
	a.			S=1 R=0				
		S=0 R=1		S=R=1				
(x)	Total 1	number of Flip flops required to imple	emei	nt the sequence 4,0,10,2,16,3 i	S			
	a.	3	b.	4				
	c.	5	d.	6				
		Group) –]	3				
(Short Answer Type Questions) 3 x 5								
		(23333333333333333333333333333333333333) F -	(
Ansv	ver any <i>t</i>	three from the following						
2.	A comb	A combinational circuit is defined by the following three functions:						
	F1= $\bar{x}\bar{y} + xy\bar{z}$, F2= $\bar{x} + y$, F3= $xy + \bar{x}y$							
	Design	tes.	[5]					
3.	Explain the Race around condition in JK flip flop.				[5]			
4.	4. Construct an 8X1 Multiplexer implemented using basic gates. Estimate							
	the total	l cost required to implement 2 ⁿ to 1 N	I ulti	plexer.	[3+2]			
5.	Explain the working principle of 4 bit SISO shift register.							

6. Obtain the simplified expression in sum of product terms for the following Boolean function:
F(A,B,C)= \(\bar{A}B + B\bar{C} + \bar{B}\bar{C}\)
[5]

Group - C (Long Answer Type Questions) $3 \times 15 = 45$ Answer any three from the following Explain the working principle of 1X8 Demultiplexer. 7. (a) [5] Design a combinational circuit which accepts a three-bit number (b) and output binary number equal to the square of the input number. [10] 8. Explain the working principle of 3X8 decoder. [5] (a) A combinational circuit is defined by the following two functions: (b) $F1 = \sum (0,3)$ $F2 = \sum (0,2,3,7)$ Implement the combinational circuit using decoder and external [10] gates. 9. (a) Explain the Full Subtractor operation with it's circuit diagram. [5] (b) Implement the Full Subtractor operation using Multiplexer. [5] Design a circuit using Multiplexer and Counter to generate the (c) following sequence:10010100 [5] 10. (a) Design a synchronous Decade counter. [10] (b) Design D flip flop using SR flip flop. [5] Explain the working principle of clocked SR flip flop. 11. (a) [5] (b) Design a binary counter having the following repeated binary sequence. 0,1,2,3,4,5,6. Use T flip flop. [10]