

BRAINWARE UNIVERSITY

Course - MCA

Algorithm Analysis (MCA302)

(Semester - 3)

Time allotted: 3 Hours Full Marks: 70

[The figure in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group -A

		Group				
		(Multiple Choice T	ype			
				$10 \times 1 = 10$		
1.	Choos	te the correct alternative from the follow	lowi	ing		
(i)	Which	Which of the following algorithm design technique is used in quick sort algorithm?				
	a.	Dynamic programming	b.	Backtracking		
	c.	Divide and Conquer	d.	Greedy method		
(ii)	Krusk	al's algorithm uses	_·			
	a.	edge	b.	vertex		
	c.	edge, edge	d.	none of these		
(iii)	ii) Complexity of the recurrence relation $T(n) = 8T(n/2) + n^2$ is					
	a.	O(n)	b.	$O(n^2)$		
	c.	O(lg n)	d.	$O(n^3)$		
(iv)	Ω-nota	ation provides an asymptotic				
	a.	upper bound	b.	lower bound		
	c.	one that is sandwiched	d.	none of these		
(v)	If f(n)	between the two bounds $= 2n^2 + 3n + 1$ then				
(1)		$f(n) = O(n^2)$	b.	$f(n) = \Theta(n^2)$		

d. none of these

c. $f(n) = \Omega(n^2)$

(vi)	If $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$, the	en					
	a. $f(n) = \Theta(h(n))$	b. $f(n) = O(h(n))$					
	c. $f(n) = \Omega(h(n))$	d. none of these					
(vii)	Which of the following standard algori	thm is not a greedy algorithm?					
	a. Dijkstra's algorithm	b. Prim's algorithm					
	c. Kruskal's algorithm	d. Bellmen Ford Shortest path	algorithm				
(viii)	The time complexity of Strassen's algo-	orithm for matrix multiplication is					
	a. $\Theta(n)$	b. $\Theta(n^3)$					
	c. $\Theta(n^2)$	d. $\Theta(n^{2.81})$					
(ix)	In $T(n) = a T(n/b) + f(n)$, a refers to						
	a. Size of sub problem	b. No. of sub problems					
	c. Time to combine solutions	d. none of these					
(x)	x) Time complexity for the Floyd's algorithm to find all pairs shortest path of a graph G with V vertices and E edges using dynamic programming method is						
	a. $O(V^2)$ c. $O(V^3)$	b. $O(E^2)$					
	c. $O(V^3)$	d. $O(E^3)$					
		n.					
		Dup – B or Type Questions)					
		ee from the following)					
2.	Apply backtracking technique to solve	N-queen's problem. Explain the	$3 \times 5 = 15$				
	procedure with required algorithm consid		[5]				
3.	Solve the knapsack problem using gree						
	number of objects (n) = 3, knapsack cap	pacity (m) = 20, profits (p1, p2,					
	p3) = (25, 24, 15) and weights (w1, w2, w	w3) = (18, 15, 10).					
	Which type of knapsack problem ca	annot be solved using greedy					
	strategy?		[4 + 1]				
4.	Explain 15-puzzle problem using brane	ch and bound method. Draw a					
	portion of the state space tree generated b	oy it.	[5]				

5. Define Big-O notation.

Show that $\log n! = O (n \log n)$.

[2+3]

6. Discuss Bellman-Ford algorithm to solve single source shortest path problem on a weighted directed graph.

[5]

Group - C

(Long Answer Type Questions)
(Answer any *three* from the following)

 $3 \times 15 = 45$

7. (a) Find the optimal number of scalar multiplications needed to compute the following matrix chain product using dynamic programming.

$$A(4\times10) * B(10\times3) * C(3\times12) * D(12\times20) * E(20\times7)$$

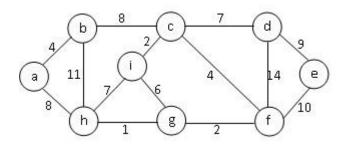
[7]

(b) Find the optimal parenthesization for the above matrix chain product. Write down the algorithm for the above procedure.

[8]

8. (a) State the Master theorem.

[5]


(b) Solve the following recurrences using Master theorem:

(i)
$$T(n) = T(2n/3) + 1$$

(ii)
$$T(n) = 3T(n/4) + n \log n$$

[5+5]

9. (a) Using Prim's algorithm find out the minimum spanning tree from the given graph.

[8]

(b) Analyze the complexity of the above algorithm.

[2]

	(c)	Differentiate between dynamic programming and divide and	
		conquer approaches.	[5]
10.	(a)	Write the Knuth-Morris-Pratt algorithm for pattern matching.	[5]
	(b)	Apply KMP algorithm for the pattern p ="ababaca" and string	
		s="bacbababacaab". Show each step.	[7]
	(c)	What is the difference between Naïve algorithm and KMP	
		algorithm?	[3]
11.		Write the short notes on any three of the following:	[3 x 5]
	(a)	Recursion tree	
	(b)	Strassen's matrix multiplication	
	(c)	Relation between P class, NP class, co-NP class, NP hard and NP	
		complete class.	
	(d)	Merge sort	
	(e)	Graph coloring problem	