

BRAINWARE UNIVERSITY

Term End Examination 2018 - 19

Programme-B.Sc.(CS)

Course Name - Linear Algebra and Single Variable Calculus

Course Code - BMAT010602

(Semester - 1)

Time allotted:3 Hours

Full Marks : 70

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group –A

(Multiple Choice Type Questions)	$10 \ge 1 = 10$
----------------------------------	-----------------

1. Choose the correct alternative from the following:

(i)		1	2	-1		
	The value of the determinant	2	1	1	is	
		1	4	$ \begin{array}{c} -1\\ 1\\ 2 \end{array} $		
	a15				b.	15
	c. 10				d.	13
(ii)	The value of $\Gamma\left(\frac{1}{3}\right)\Gamma\left(\frac{2}{3}\right)$ is					
	a. $\frac{2\pi}{\sqrt{3}}$				b.	$\frac{3\pi}{\sqrt{2}}$ $\frac{\pi}{\sqrt{2}}$
	c. $\frac{\pi}{\sqrt{3}}$				d.	$\frac{\pi}{\sqrt{2}}$
(iii)	The value of $\beta\left(\frac{1}{2},\frac{1}{2}\right)$ is					
	a. <i>π</i>				b.	$\sqrt{\pi}$
	c. $\frac{\sqrt{\pi}}{2}$				d.	$\sqrt{\pi}$ $\frac{\pi}{2}$

(iv) The sum of the eigen values of the matrix $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 1 & 5 & 1 \end{pmatrix}$ is $(3 \ 1 \ 1)$ b. 5 a. 6 d. 7 c. 4 If A is a non-null square matrix then $A+A^{T}$ is a (v) e. symmetric matrix f. skew-symmetric matrix h. none of these g. null matrix (vi) If $g(x) = \frac{1-x}{1+x}$ then $g(x) + g\left(\frac{1}{x}\right)$ is b. 1 a. -1 c. 2 d. 0 The value of $\Gamma(6)$ is (vii) a. 720 b. 5 d. 120 c. 6 (viii) In the Mean-value theorem $f(h) = f(0) + hf'(\theta)$; $0 < \theta < 1$, if $f(x) = \frac{1}{1+x}$ and h = 3, then the value of θ is a. 1 b. $\frac{1}{3}$ d. $-\frac{1}{\sqrt{2}}$ c. $\frac{1}{\sqrt{2}}$ (ix) The series $\sum_{n=1}^{\infty} \frac{n! \cdot 2^n}{n^n}$ is a. convergent b. divergent c. oscillatory d. none of these The modulus and amplitude of the complex number 4+4i are (x) a. $4\sqrt{2}$ and $\frac{\pi}{4}$ b. $4\sqrt{2}$ and $\frac{\pi}{2}$ c. $2\sqrt{2}$ and $\frac{\pi}{4}$ d. $2\sqrt{2}$ and $\frac{\pi}{2}$

5

3+2

5

7

Group – B

(Short Answer Type Questions)
$$3 x5 = 15$$

Answer any three from the following :

2. Evaluate
$$\lim_{x \to \infty} \frac{e^x - e^{-x} - 2x}{x - \sin x}.$$

3. Using Lagrange's MVT, prove
$$0 < \frac{1}{x} \log \frac{e^x - 1}{x} < 1$$
.

Express $A = \begin{pmatrix} 1 & 3 & 4 \\ 7 & 2 & 6 \\ 2 & 8 & 1 \end{pmatrix}$ as P+Q, where P is a symmetric matrix and Q is a skew

symmetric matrix.

5. Expand by Laplace method to prove that

$$\begin{vmatrix} a & b & c & d \\ -a & b & c & d \\ -a & -b & c & d \\ -a & -b & -c & d \end{vmatrix} = 8abc$$
5

6. Show that $\int_{-1}^{1} \frac{1}{x^3} dx$ exists in Cauchy's principal value sense but not in the general sense.

Group – C

(Long Answer Type Questions)

 $3x \ 15 = 45$

Answer any *three* from the following :

$$x + y + z = 1$$

$$x + 2y - z = k$$

$$5x + 7y + az = k^{2}$$

admits (i) only one solution (ii) no solution (iii) many solutions(b) Using Laplace's method of expansion, prove that :

$$\begin{vmatrix} x & y & -u & -v \\ y & x & v & u \\ u & v & x & y \\ -v & -u & y & x \end{vmatrix} = (x^2 + v^2 - y^2 - u^2)^2$$
5

(c) If
$$x^2 + y^2 = 14xy$$
, prove that $2\log\left(\frac{x+y}{4}\right) = \log x - \log y$
8. (a) If $A = \begin{pmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \\ 1 & 2 & 0 \end{pmatrix}$, show that $A^2 - 6A - 9I_3 = O$. Hence obtain a matrix B such that $BA = I_3$.
(b) Prove that the set $S = \left\{ \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} : x_1 + x_2 = 0, x_i \in R \right\}$ is a subspace of the space of real matrices of size 2×2 . Find a basis of S and hence determine the dimension of S.
(c) Is Rolle's Theorem applicable for the function $f(x) = (x - p)^m (x - q)^n, x \in [p, q]$, where m, n are positive integers? If so, find the constant c of Rolle's Theorem, where c has its usual meaning.
9. (a) Obtain the Fourier series to represent $f(x) = x^2$ in $-\pi \le x \le \pi$. Hence, show that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}$
(b) Prove that $\beta(m, n) = \int_0^{x} \frac{x^{m-1}}{(1 + x)^{m+n}} dx$.
(c) If $z = x + iy$ and $|z + 6| = |zz + 3|$ prove that $x^2 + y^2 = 9$.
10. (a) Find Fourier sine series for $f(x) = e^i$ in $0 < x < \pi$.
(b) State Cayley-Hamilton Theorem and verify the same for the matrix $A = \begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix}$. Hence find A^{-1} and A^8 .
(c) State D'Alembert's Ratio test. Using this test, examine the convergence of the following series $1 + \frac{2^{w}}{2!} + \frac{3^{w}}{3!} + \frac{4^{w}}{4!} \dots = \infty$ $(a > 0)$
11. (a) If $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$. Find the rank of the matrix $A + A^2$
(b) Evaluate $\lim_{x \to \infty} \left\{ \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right\}$
(c) State Maclaurin's theorem for infinite series. Expand the functions $e^{w'}$ in powers of x in an infinite series.
