

BRAINWARE UNIVERSITY

Term End Examination 2018 - 19

Programme – Dip. CSE/ Dip. ECE/ Dip. EE

Course Name - Mathematics-I

Course Code - DMAT010101

(Semester - 1)

Time allotted: 3 Hours

1.

(i)

(ii)

(iii)

(iv)

Full Marks: 70

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group -	-A		
(Multiple Choice Ty	pe (Questions)	10 x 1 = 10
Choose the correct alternative from the for If $\log_2^3 = a$, then the value \log_8^{27} is	llow	ing:	
a. <i>a</i>	b.	a^2	
c. $\frac{1}{a}$	d.	$\frac{1}{a^2}$	
The conjugate of the complex number $\frac{1+i}{1-i}$	is		
a. i	b.	-i	
c. 1-i	d.	1+i	
Which line is Parallel to $y = x - 2$?			
a. $y = 2x + 1$	b.	2y = 2x - 6	
c. $2y = x + 7$	d.	y = 3x + 1	
The value of $\lim_{x \to 0} \frac{\sin \frac{x}{3}}{x}$ is			
1		1	

a.	$-\frac{1}{3}$	b.	$\frac{1}{3}$
c.	3	d.	-3

(v) The value of the determinant $\begin{vmatrix} 1 & 2 & -1 \\ 2 & 1 & 1 \\ 1 & 4 & 2 \end{vmatrix}$ is a. -15 b. 15 c. 10 d. 13 The scalar or dot product of vectors $\hat{i}+2\hat{j}-3\hat{k}$ and $2\hat{i}-\hat{j}+\hat{k}$ is (vi) b. 2 a. 3 c. -3 d. -2 If $y = \tan^{-1} \frac{\sin x}{1 + \cos x}$ then $\frac{dy}{dx} =$ (vii) a. $-\frac{1}{2}$ b. $\frac{1}{2}$ c. 2 d. 1 (viii) If $\sec \theta = \frac{9}{2}$, where θ is in the 4th quadrant, the value of $\tan \theta$ is e. $-\sqrt{77}$ f. $-\frac{9}{2}$ g. $-\frac{\sqrt{77}}{2}$ h. $-\frac{\sqrt{77}}{9}$ P is the point (4, -2) and Q is the point (-3, -5). Then the length of PQ is (ix) e. $\sqrt{50}$ f. $\sqrt{98}$ g. $\sqrt{40}$ h. $\sqrt{58}$ If $f(x)=x^3$, g(x)=tanx, then the value of $(f \circ g)(x)$ is (x) f. $x^3 \tan x$ e. $\tan(x^3)$ g. $(x \tan x)^3$ h. $(\tan x)^3$

5

5

5

5

5

Group – B

(Short Answer Type Questions)
$$3 \times 5 = 15$$

Group – C

(Long Answer Type Questions)	3 x 15 = 45
------------------------------	-------------

Ans	wer a	ny <i>three</i> from the following :	
7.	(a)	If the roots of the equation $ax^2 + 4bx + 2a = 0$ are imaginary, prove that the roots of $(a+b)x^2 + 2bx + (a-b) = 0$ are also imaginary.	5
	(b)	If $A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$, show that $A^2 - 4A - 5I_3 = O$.	
			5
	(c)	Express the equation $2x-3y+4=0$ in normal form. Hence obtain the	
		perpendicular distance of origin from this line.	5
8.	(a)	If $f(x) = 2x^2 - 3x - 1$, find $f(x+1)$. Hence find $f(0)$.	5
	(b)	Find the area of the quadrilateral whose vertices are $(-3, -2), (5, -4), (1, 5)$ and	
		(-1,2)	5
	(c)	Find $\frac{dy}{dx}$ where $y = \tan^{-1} \sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}}$.	5

9.	(a)	Prove that a square matrix can be expressed as the sum of a symmetric matrix and a skew symmetric matrix.	5
	(b)	If the sum of the roots of $ax^2 + bx + c = 0$ be equal to sum of their squares then prove that $2ac = ab + b^2$.	5
	(c)	Find whether the three straight lines $2x+3y=6, 8x+7y=26$ and $x-y+4=0$ are concurrent or not.	5
10.	(a)	If $A = \begin{pmatrix} 1 & 0 & 1 \\ 3 & 4 & 5 \\ 2 & 3 & 4 \end{pmatrix}$, find A^{-1} .	5
	(b)	Test the continuity of the function at x=2, $f(x) = \begin{cases} \frac{x^3 - 8}{x^2 - 4}, & x \neq 2\\ 3, & x = 2 \end{cases}$	5
	(c)	If $z = x + iy$ and $ z+6 = 2z+3 $, prove that $x^2 + y^2 = 9$.	5
11.	(a)	Solve the following system of equations by Cramer's rule : x+2y-3z=1 2x-y+z=4 x+3y=5	5
	(b)	Show that the vectors $\hat{i}-3\hat{j}+5\hat{k}$, $3\hat{i}-2\hat{j}+\hat{k}$ and $2\hat{i}+\hat{j}-4\hat{k}$ form a right- angled triangle.	5
	(c)	Evaluate $\lim_{x \to 2} \frac{x^2 - 4}{\sqrt{3x - 2} - \sqrt{x + 2}}$.	5
