

BRAINWARE UNIVERSITY

Term End Examination 2018 - 19

Programme - M.Tech.(CSE)

Course Name - Applicable Mathematics

Course Code - MMAT010101

(Semester - 1)

Time allotted: 3 Hours

Full Marks : 70

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group –A

(Multiple Choice Type Questions)	$10 \ge 1 = 10$
----------------------------------	-----------------

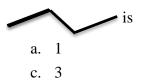
- 1. Choose the correct alternative from the following:
- (i) In a Binomial (n,p) distribution, if its mean and variance are 2 and 16/9 respectively, then the values of n and p are:

a.	$18, \frac{1}{9}$	b. 16,	1 9
c.	$16, \frac{1}{8}$	d. 18,	$\frac{1}{8}$

(ii) If f(G, x) is the chromatic polynomial of a tree with 5 vertices then f(G,3) =

a.	5	b.	320
c.	48	d.	14

(iii) The regression coefficients are


- a. independent of change of b. independent of change of scale only origin only
- c. independent of change of origin but not of scale
- d. independent of both change of origin as also of change of scale.
- (iv) The condition for independence of two events A and B is

a.
$$P(A \cap B) = P(A)P(B)$$

b. $P(A+B) = P(A)P(B)$
c. $P(A-B) = P(A)P(B)$
d. $P(A \cap B) = P(A)P(B/A)$

- (v) The distribution for which mean and variance are equal is
 - a. Poisson b. Normal
 - c. Binomial d. Exponential

- (vi) If $\sigma = 3$ be the Null hypothesis then which one of the following is a possible Alternative hypothesis
 - a. $\sigma = 4$ b. $\sigma = 1$ c. $\sigma = 0$ d. $\sigma \neq 3$
- (vii) A null graph with n vertices is
 - a. 1-chromatic
 - c. n-chromatic

- b. (n-1)-chromaticd. (n+1)-chromatic
- (viii) The independence number of the graph

b. 2d. none of these

(ix) For the distribution

X	3	5	7	9
f_i	1	1	1	11
	2	5	7	70

if Y=3X+1 then P(Y=22) is

a.
$$\frac{1}{2}$$
 b. $\frac{1}{5}$

 c. $\frac{3}{10}$
 d. $\frac{1}{7}$

(x) The maximum likelihood estimate is a solution of the equation

a.
$$\frac{\partial L(\theta)}{\partial \theta} = 0$$

b. $\frac{\partial L(\theta)}{\partial \theta} = \text{Constant}$
c. $\frac{\partial L(\theta)}{\partial \theta} = \theta$
d. none of these

Group – B

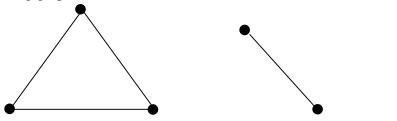
(Short Answer Type Questions)

 $3 \ge 5 = 15$

An	swer any <i>three</i> from the following :	
2.	In a random sample of 525 families owning a television set in a city it is found that	
	370 have subscribed to a sports channel. Find a 95% confidence interval for the	
	actual proportion of such families in this city which subscribe to sports channel.	5

5

10


3.	State and prove Chebyshev's inequality.	5
4.	A random variable X with unknown distribution has mean 8 and variance 9. Find	
	P(-4 < X < 20).	5
5.	What is a Bernoulli process. Give one example of a homogeneous Bernoulli process.	5
6.	By re-drawing Kuratowski's First Graph, show that it is non-planar.	5

Group – C

(Long Answer Type Questions)	3 x 15 = 45
------------------------------	-------------

Answer any *three* from the following :

7. (a) Find the chromatic polynomial, and hence find the chromatic number for the following graphs:

(b) Suppose that a testing procedure A results in 20 unacceptable phones out of 100 produced whereas another testing procedure B results in 12 unacceptable phones out of 100 produced. Can we conclude at 5% level of significance that the two methods are equivalent?

10. (a) The following random samples are measurements of the heat producing capacity in millions of calories per ton of specimens of coal from two mines:

	Mine I:	8260	8130	8350	8070	8340		
	Mine II:	7950	7890	7900	8140	7920	7840	
(b)	these two Prove tha	samples at for any	is signit two eve	ficant. nts A, B		e differend	ce between the means of	8
	i) <i>P</i> (A+	B) = 1 - 1	P(B) + P(B)	(AB)				
	ii) $P(A\bar{B})$	= P(A)	-P(AB)					3+2
(c)	What is	the chai	nce that	a leap	year sele	ected at r	candom will contain 53	
	Tuesdays			1	5			2
(a)	Define							
	(a) null and alternate hypothesis							
	(b) critica	al region						
	(c) type I	and type	e II error	5				
	(d) level of	of signifi	cance					
	(e) power							10
(b)							from variable X is $F(x)$, is a constant).	3
(c)	Define mo						·····	2

11.
