

BRAINWARE UNIVERSITY

Term End Examination 2018 - 19

Programme – B.Sc.(CS)

Course Name – Mathematics-I

Course Code - BCS103

(Semester - 1)

Time allotted: 3 Hours

Full Marks : 70

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group –A

	(Multiple Choic	e Type Question)	10 x 1 = 10
1. (i)	<i>Choose the correct alternative from th</i> If A and B are two sets such that AUB=		
	a. $A = \Phi$	b. $B = \Phi$	
	c. $A = B$	d. none of these	
(ii)	Let N be the set of natural numbers and $R = \{(a, b) : a = b - 2, b > 6\}$. Then	d R be the relation in N defined as	
	a. $(2, 4) \in \mathbb{R}$	b. $(8, 7) \in \mathbb{R}$	
	c. $(3, 8) \in \mathbb{R}$	d. $(6, 8) \in \mathbf{R}$	
(iii)	If A and B are non-singular square mat	trices, then $(AB)^{-1}=$	
	a. $A^{-1} B^{-1}$	b. AB ⁻¹	
	c. $A^{-1} B$	d. $B^{-1} A^{-1}$	
(iv)	Trace of a square null matrix is		
	a. 1	b. 0	
	c. ∞	d. None of these	
(v)	The statement p and $q \sim (p \lor q)$ impli	ies	
	a. $\sim p \wedge \sim q$	b. $\sim p \lor \sim q$	
	c. $(p \lor q)$	d. None of these	

(vi)	Contra	apositive of " $\sim p \rightarrow q$ " is		
	a.	$p \rightarrow q$	b.	$\sim q \rightarrow \sim p$
	с.	$\sim q \rightarrow p$	d.	$q \rightarrow \sim p$
(vii)	The po	ossible number of vertices in a binary	r tree	e is
	a.	4	b.	6
	с.	5	d.	2
(viii)	A min	imally connected graph is a		
	a.	Binary tree	b.	Hamiltonian graph
	c.	Tree	d.	Regular graph
(ix)	A null	graph with n vertices is		
	a.	1-chromatic	b.	(n-1)-chromatic
	c.	n-chromatic	d.	(n+1)-chromatic
(x)	If C ₉₇	be a circuit with 97 number of vertice	es, t	hen $\chi(C_{97})$ is

a.	97	b.	98
c.	2	d.	3

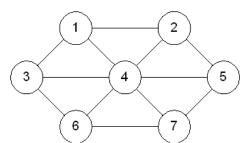
Group – B

(Short Answer Type Questions)	3 x 5 = 15
-------------------------------	------------

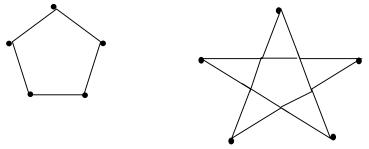
Answer any *three* from the following :

2.	$\begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$						
	If $A^{-1} = \begin{vmatrix} 3 & 4 & 5 \end{vmatrix}$, find A.						
	If $A^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 3 & 4 & 5 \\ 2 & 3 & 4 \end{pmatrix}$, find A.						
3.		1	1	1	0	0]	
	Draw the graph from the matrix	1	1	1	0	0	
	Draw the graph from the matrix	1	1	1	0	0	
		0	0	0	0	1 0	
		0	0	0	1	0	

4. Define Adjacency Matrix for a non-directed graph. Hence find the adjacency matrix for the following graph



5. Define Isomorphic graph. Examine whether the following graphs are isomorphic or not?



2+3 5

5

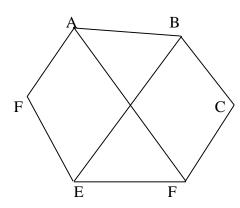
6. Show that $(p \to (q \to r)) \to ((p \to q) \to (p \to r))$ is a contradiction.

Group – C

(Long Answer Type Questions) $3 \times 15 = 45$

Answer any *three* from the following :

7. (a) Find the chromatic number of the following graph. Find whether this graph is perfect.



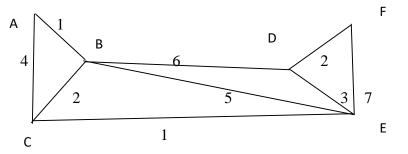
- (b) Prove that a tree with n vertices has n-1 edges.
- (c) Show that formula A: $(p \to q) \lor (p \to r)$ is logically equivalent to the formula B: $p \to (q \lor r)$.

6

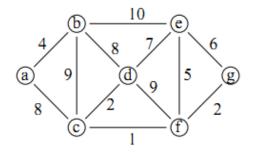
4

5

8. (a) Using Dijkstra's Algorithm find the length of the shortest path of the following graph from the vertex A to F:



- (b) Solve the recurrence relation $a_n - 5a_{n-1} + 6a_{n-2} = 2^n + n, n \ge 2$ with the boundary condition $a_0 = 1, a_1 = 1$
- 9. (a) Use Kruskal's Algorithm and Prim's algorithm find the minimal spanning tree and the corresponding weight of the spanning tree in the following graph:



5+5

5

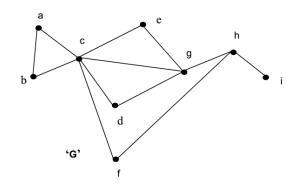
8

7

(b) Show that the statement formula A logically implies statement formula B

$$A:(q \to (p \land \sim p)) \to (r \to (p \land \sim p)), B:(r \to q)$$
5

- 10. (a) Prove that for a complete graph with n number of vertices, the number of edges is exactly $\frac{n(n-1)}{2}$
 - (b) Construct a spanning tree of the following graph G by BFS and DFS:



5

Show that $(p \land q) \lor (q \land r) \lor (p \land r)$ is a contingency. 5 (c) Using Principle of inclusion and exclusion show that for any three sets A, B 11. (a) and C: $n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C)$ $n(A \cap C) + n(A \cap B \cap C)$ 6 (b) Find the inverse of the matrix: $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$ 5 A graph with at least one edge is 2- chromatic iff it has no circuit of odd (c) length. 4
