

BRAINWARE UNIVERSITY

Term End Examination 2018 - 19

Programme - Bachelor of Science (Honours) in Computer Science

Course Name - Image Processing

Course Code - BCS501B

(Semester - 5)

Time allotted: 3 Hours Full Marks: 70

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group -A

(Multiple Choice Type Question)

 $10 \times 1 = 10$

- 1. Choose the correct alternative from the following
- (i) The histogram of a digital image with gray levels in the range [0, L-1] is represented by a discrete function.
 - a. $h(r_k)=n_k$

b. $h(r_k)=n/n_k$

c. $h(r_k)=n.n_k$

- d. $h(r_k)=1/n_k$
- (ii) A filter that passes low frequencies is known as which of the following?
 - a. High pass filter

b. Low pass filter

c. Band pass filter

- d. None of the above
- (iii) In a dark image, the components of histogram are concentrated on which side of the grey scale?
 - a. High

b. Medium

c. Low

d. Evenly distributed

(iv)	What is the process of moving a filter mask over the image and computing the sum of products at each location called as?					
	a.	Convolution	b.	Correlation		
	c.	Linear spatial filtering	d.	Non linear spatial filtering		
(v)	The maximum number of points that can be displayed without overlap on a CRT is called					
	a.	Aspect Ratio	b.	Resolution		
	c.	Brightness	d.	Pixel		
(vi)		ction of a point about x-axis, followed alent to reflection about the line	l by	a counter clockwise rotation of 90^{0} , is		
	a.	x = -y	b.	x=0		
	c.	x=y	d.	x+y=1		
(vii)	The n	umber of grey values are integer pow	ers	of		
	a.	2	b.	4		
	c.	3	d.	1		
(viii)	Digiti	zation of a continuous signal is obtain	ned	by		
	a.	Random	b.	Vertex		
	c.	Contour	d.	Sampling		
(ix)	What is the tool used in tasks such as zooming?					
	a.	Sampling	b.	Interpolation		
	c.	Filters	d.	Sharp edges		

(x) O	blique projection w	ith an angle of 45 ⁰	to the l	norizontal plane is called	
		a. Cabinet projec	etion	b.	Isometric Projection	
		c. Cavalier proje	ection	d.	none of these	
			Gro	up – F	3	
			(Short Answer	_		3 x 5 = 15
Ans	swer a	ny <i>three</i> from the fo	ollowing			
2.		mage of dimension nory requirement to		ed in 8	bit Grayscale mode. Comput	te the
3.	Disc	euss about gradient	filters.			5
4.	Exp	lain gaussian smoot	thing operation.			5
5.	Disc	cuss about correlation	on operation.			5
6.	Exp	lain the term connec	ctivity, path, region	n and b	oundary.	5
			Gro	up – (
			(Long Answer	r Type	Questions)	3 x 15 = 45
Ans	wer ar	y three from the fol	llowing			
7.	(a)	What are the diffe	rent applications o	of image	e segmentation?	5
	(b)	Explain different i	image segmentatio	n techn	iques.	10
8.	(a)	Derive 2D transfo	rmation matrix for	r rotatio	n about origin.	5
	(b)				and p2(40,50) is rotated ee. Compute the new coordin	ate
		position of the line	e in 2 dimensional	space.	-	10
9.	(a)	Define histogram	of an image.			5

TEE / BCS501B / 2018 - 19

	(0)	Perform histogram equalization of the following image.			
		4 4 4 4 4			
		3 4 5 4 3			
		3 5 5 5 3			
		3 4 5 4 3			
		4 4 4 4 4	10		
10.	(a)	What is the need of image compression?	3		
	(b)	Explain how RLE helps in image data compression.	10		
	(c)	What are the disadvantages of lossy image compression?	2		
11.	(a)	Explain region growing and region splitting technique for image segmentation.			
	(b)	Explain the properties of Fourier transform.	8		
	(c)	Define salt and pepper noise.	2		
