

BRAINWARE UNIVERSITY

Term End Examination 2018 - 19

Programme - Bachelor of Science (Honours) in Computer Science

Course Name – Introduction to Automata Theory

Course Code – BCS 503

(Semester - 5)

Time allotted: 3 Hours Full Marks: 70

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group -A

(Multiple Choice Type Questions)

 $10 \times 1 = 10$

- 1. Choose the correct alternative from the following
- (i) The output of a Moore machine depends on
 - a. The present state only
- b. The present state and the input symbol
- c. The input symbol only
- d. Stack symbol
- (ii) Which of the following in not a regular language over $\{0,1\}$?
 - a. Set of all strings containing 1110011 as substring
- b. Set of all palindromes
- c. Set of all strings beginning with 0110
- d. Set of all strings ending with 1101

- (iii) An FSM
 - a. Can recognize only natural language such as Hindi
- b. Can recognize all types of languages
- c. Cannot recognize any language
- d. Can recognize only regular language

(iv)	The string 1111 can be generated through the regular expression:						
	I. II. III. IV.	(11)* (1+01)* (11+01) (00+1)*					
	a.	I only	b.	I and II only			
	c.	I,II,IV only	d.	Using all			
(v)	The Regular set denoted by the regular expression (a+b)(a+b) is						
	a.	{aa,ba}	b.	{aa,ab,ba,bb}			
	c.	$\{a,b\}$	d.	{a,b,ab,ba}			
(vi)	Which	h of the following regular expression represents the language L= $\{a^{2n} \mid n>=0\}$?					
	a.	(aa)*	b.	a*			
	c.	aa*a	d.	a*a*			
(vii)	A pumping lemma is used for proving that						
	a.	a language is natural	b.	two regular sets are equivalent			
	c.	a language is not regular	d.	a language is recursively enumerable			
(viii)	The language accepted by finite automata is						
	a.	Type 0	b.	Type 1			
	c.	Type 2	d.	Type 3			
(ix)	The la	$nguage L=\{a^nb^{2n} n>=1\}$					
	a.	Can be accepted by both PDA	b.	Can be accepted neither by PDA nor			
	c.	and finite automaton Can be accepted by a finite automaton but not by a PDA	d.	by a finite automaton Can be accepted by a PDA but not by a finite automaton			
(x)	For the	e standard Turing Machine					
	a.	\sum is a proper subset of Γ	b.	$\Gamma \subseteq \sum$			
	c.	$\Sigma \subseteq \Gamma$	d.	$\sum = \Gamma$			

 $3 \times 15 = 45$

Group-B

	$3 \times 5 = 15$	
Ans	wer any <i>three</i> from the following	
2.	Write a brief note on Chomsky classification of grammars.	5
3.	Construct a Mealy machine which can output EVEN, ODD according as the total number of 1's encountered is even or odd. The input symbols are 0 and 1.	5
4.	What do you meant by Deterministic Finite Accepter? Find a deterministic finite accepter that recognizes the set of all strings on $\Sigma = \{a,b\}$ which contains even number of a's and odd number of b's.	2+3
5.	Prove that there exists an algorithm for determining whether a regular language, given in standard representation, is empty finite or infinite.	5
6.	Find the highest type number which can be applied to the following productions:	
	$S \rightarrow Aa$, $A \rightarrow c \mid Ba$, $B \rightarrow abc$	5

Group - C

(Long Answer Type Questions)

Answer any three from the following 7. (a) What do you meant by Push Down Automata? Explain with 5 example. Construct a Push Down Automata accepting $\{a^nb^mc^n \mid m,n >=1\}$ by 10 (b) Final state. 8. Show that the family of regular languages is closed under (a) differences. 5 5 (b) Explain the Pumping Lemma in the context of Regular Language. Using Pumping Lemma show that $L=\{a^nb^n | n>=0\}$ is not regular. 5 (c)

9.	(a)	What do you meant by Context Free Languages?	
	(b)	Construct a context free grammar G generating all integers with sign. Use the grammar to obtain -35	5
	(c)	Let G={V,T,P,S} be given by the productions	
		$S\to AB$, $A\to a$, $B\to b$, $B\to C$, $E\to c$. Find G' such that every variable in G' derives some terminal string.	5
10.	(a)	Describe Turing Machine with example.	5
	(b)	Design a Turing Machine over $\{1,b\}$ which can compute concatenation function over $\Sigma = \{1\}$. If a pair of words (w_1,w_2) is the input, the output has to be w_1w_2 .	10
11.	(a)	What do you meant by an Uncountable set? Give example of uncountable set.	5
	(b)	Prove that the set of all strings over any finite alphabets are countable.	10
