

BRAINWARE UNIVERSITY

Term End Examination 2018-19

Programme - B.Tech. in Computer Science & Engineering

Course Name - Digital Electronics

Course Code – BCSE301

(Semester - 3)

Time allotted: 3 Hours Full Marks: 70

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group -A

(Multiple Choice Type Question) $10 \times 1 = 10$ 1. Choose the correct alternative from the following The number of select input lines in 16X1 Multiplexer is (i) a. 8 b. 8 c. 4 d. 4 Total number of minterms using in Boolean variables is (ii) a. n-1 b. n $c. 2^n$ d. 2^{n-1} Popular application of flip-flop are? (iii) a. Counters. b. Counters. a. Registers. c. Transfer registers. To implement Modulus 19 counter, total number of JK flip flop will be (iv) b. 5 a. 5 c. 3 d. 3 The 2's complement of $(1101\ 0011)_2$ is (v) a. 0010 1101 b. 0010 1101 c. 0010 1100 d. 0010 1100 (vi) On a master-slave flip-flop, when is the master enabled? a. When the gate is LOW b. When the gate is HIGH

d. Neither of the above

c. Both of the above

(vii) $(A5)_{16} = (X)_{10}$? a. 140. b. 150. c. 155. d. 165. (viii) a. [[C(A+B)D]E']b. [C(A+B)D+E']c. C(A+B)DE d. ABCDE How many address bits are needed to select all memory locations in the 2118 16K × 1 RAM? (ix) a. 8. b. 14. c. 10. d. 16. How many flip-flops are required to make a MOD-32 binary counter? (x) a. 3. b. 45. c. 6. d. 5. Group – B (Short Answer Type Questions) $3 \times 5 = 15$ Answer any three from the following 2. Draw the block diagram for the circuit of 16 to 1 MUX by using two 74HC151. [5] Draw the truth table and the logic circuit for 3 to 8 decoder. 3. [5] What is the function of a D flip-flop that triggers only on positive-going transitions 4. [3] (a) Explain with an example by drawing waveforms. [2] (b) 5. Differentiate latch and flip-flop. (a) [2] Draw a diagram and specify rise time, fall time and duration (width) of the pulse. (b) [2] What is NGT and PGT? (c) [1] Draw a 2's complement circuit and test with an example. 6. [5] Group - C (Long Answer Type Questions) $3 \times 15 = 45$

Answer any *three* from the following

7. (a) Draw the circuit diagram of a clocked J-K flip-flop using only two input NAND gates. [5]
(b) Implement Y= (AB)'+A+(B+C)' only using NAND gates. [5+5]
Realize Y=(A+C)(A+D')(A+B+C') using NOR gates.

8.	(a)	Draw the truth table and circuit for 1 to 8 demultiplexer.	[5]
	(b)	The logic expression of the output of a four input digital circuit is given bellow.	
0	` /	$B_3 = \sum_{m} (8, 9, 10, 11, 12, 13, 14, 15)$	
		$B_2 = \sum_{m} (4, 5, 6, 7, 8, 9, 10, 11)$	
		$B_1 = \sum_{m} (2, 3, 4, 5, 8, 9, 14, 15)$	
		$B_0 = \sum_{m} (1, 2, 4, 7, 8, 11, 13, 14)$	
		Simplify the above expressions by using K map and draw the logic circuit using	54.03
	()	XOR gate only.	[10]
9.	(a)	Generate the logic expressions of a 4-bit carry look ahead adder from the truth	ΓO . 5 1
	(b)	table of a full adder and draw the circuit diagram.	[8+5]
	(b)	Comment on the advantage of carry look ahead adder over conventional non-look ahead parallel adder.	[2]
10.	(a)	Design a 4-bit ripple counter with block diagram.	[2]
	(b)	Draw the wave forms of the outputs depending on the input clock signal and	[~]
	(-)	describe the process briefly by drawing the truth table.	[4+2+2]
	(c)	Comment on the frequency division or frequency scaling of the above designed	
		ripple counter.	[3]
	(d)	Why it is called a MOD – 16 ripple counter?	[2]
11.	(a)	Define uni-directional, bi- directional and Universal Shift Register?	[3]
	(b)	Draw the circuit diagram of a 4 – bit Universal Shift Register and describe the	
		operation with the help of function table.	[8+4]
