

BRAINWARE UNIVERSITY

Term End Examination 2019 – 20

Programme – Master of Science in Mathematics

Course Name - Real Analysis

Course Code: MSCMC102

(Semester - 1)

Time allotted: 2 Hours 30 Minutes

Full Marks: 60

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group -A

(Multiple Choice Type Question)

 $20 \times 1 = 20$

- 1. Answer any *twenty* from the following
- (i) Let X be a connected subset of real numbers. If every element of X is irrational, then the cardinality of X is
 - a. infinite

b. countably infinite

c. 2

d. 1

(ii) Consider the following sets of function on R

W= The set of constant functions on RR

X= The set of polynomial functions on RR

Y= The set of continuous functions on RR

Z= The set of all functions on RR

Which of these sets has the same cardinality as that of R?

a. Only W

b. Only W and X

c. Only W,X and Z

d. Only W,X,Y and Z

- (iii) Which of the following sets of the functions are uncountable?
 - a. $\{f|f:N \to \{1,2\}\}$

b. $\{f|f: \{1,2\} \rightarrow N\}$

c. $\{f|f: \{1,2\} \rightarrow N, f(1) \le f(2)\}$

d. $\{f|f:N \to \{1,2\}, f(1) \le f(2)\}$

(iv)	Let X be the set roots of unity in CC. Let $S(X)$ be the set of all sequences of elements in X. Which of the following subset of $S(X)$ is countable?				
	a.	The set A of all $(xn) \in S(X)$ such that (xn) is an eventually constant sequence.	b.	The set B of all $(xn) \in S(X)$ such that $xn=1$, whenever n is prime number.	
	c.	The set C of all $(xn) \in S(X)$ such that each xn is 26th root of unity.	d.	The set D of all $(xn) \in S(X)$ such that $x2n=1$ for all $n \ge 1$.	
	- a 5700			T	

(v)	If $\sum_{n=1}^{\infty} x_n$	is convergent, then the series	$\sum_{n=1}^k u_n$	$+\sum_{n=1}^{\infty}x_n$	is
			1.	1	

a. convergent

b. divergent

c. oscillatory

d. nothing can be said

(vi) The series
$$\sum_{n=1}^{\infty} \frac{1}{n^{(p+1)}}$$
 is divergent if

a. $p \leq 0$

b. p > 1

c. p > 0

d. $p \le 1$

(vii) Let
$$f(x) = x - \frac{x^3}{3^2 \cdot 2!} + \frac{x^5}{5^2 \cdot 4!} - \frac{x^7}{7^2 \cdot 6!}$$
 Find a point nearest to such that c

a. f'(c) = 1

b. 1

c. 0

d. 2.3445 * 10⁻⁹

a. A set may not have an infimum in R

b. Infimum of a set may not belong to the set.

c. Infimum and supremum of a set may be equal.

d. Supremum of a bounded below set always exists in R.

(ix) Which algebraic property is not true for the set of real numbers R?

a. For all $a \neq 0$, $b \in R$ such that a.b = 1 implies b = 1/a.

b. a. (1/a) = 1 for all $a \neq 0$.

c. $\sqrt{a^2} = a$ for all $a \in R$

d. If a.b > 0 then either a > 0 and b > 0 or a < 0 and b < 0

(x) Which of the following sequences is convergent?

a. (n)

b. $((-1)^n)$

c. $\left(\frac{\sin n}{n}\right)$

d. None of these.

(xi) Let
$$a_n = \frac{4^{3n}}{3^{4n}}$$
. Then the sequence (an)

a. is unbounded.

b. is bounded but not convergent

c. converges to 0.

d. converges to 1.

(xii)	A number which is neither even nor odd is				
	a. 0	b. 2			
	c. 2n such that n∈Z	d. 2π			
(xiii)	If a real number is not rational then it is				
	a. integer	b. algebraic number			
	c. irrational number	d. complex numbers			
(xiv)	Let $A=\{x x\in N\land x2\leq 7\}$. Then supremum of	A is			
	a. 7	b. 3			
	c. 0	d. Does not exist			
(xv)	A sequence $\{(-1)^n\}$ is				
	a. convergent.	b. unbounded.			
	c. divergent.	d. bounded.			
(xvi)	If the sequence is decreasing, then it				
	a. converges to its infimum.	b. diverges.			
	c. may converges to its infimum	d. is bounded.			
(xvii)	If the sequence is increasing, then it				
	a. converges to its supremum.	b. diverges.			
	c. may converges to its supremum.	d. is bounded.			
(xviii)	If a sequence {an} is convergent then the series ∑an				
	a. is convergent.	b. is divergent.			
	c. may or may not convergent	d. None of these			
(xix)	An series ∑an is said to be absolutely convergent if				
	a. $ \sum an $ is convergent.	b. ∑an is convergent but ∑an i divergent.			
	c. $\sum an $ is convergent.	d. $\sum an $ is divergent but $\sum an \sum an$ i convergent.			
(xx)	A number L is called limit of the function f when x approaches to c if for all $\varepsilon>0$, there exist $\delta>0$ such that whenever $0< x-c <\delta$.				
	a. $ f(x)-L >\varepsilon$	b. $ f(x)-L < \varepsilon$			
	c. $ f(x)-L \leq \varepsilon$	d. $ f(x)-L \ge \varepsilon$			
(xxi)	If $\lim_{x\to c} f(x) = L$, then sequence $\lim_{n\to\infty} f(x_n) = L$.	$\{x_n\}$ such that $x_n \rightarrow c$, when $n\rightarrow \infty$, one ha			
	a. for some	b. for every			
	c. for few	d. None of these			

		a. {1,2,3,5}	b. {1,3	(,3.5,5)
		c. {1,1.1,5}	d. {1,2	2,3,4,5}
(xxi		Let $f:[2,4] \rightarrow R$ be a continuous function such that the set $f([2,4])$ is that	f(2)=3 and $f(3)=3$	(4)=6. The most we can say about
		a. It is a set which contains [3,6].	b. It is	a closed interval.
		c. It is a set which contains 3 and 6.	d. It is [3,6]	a closed interval which contains
(xxi	v) l	Let A be a set. What does it mean for A to be cour	ıtable?	
		a. One can assign a different element of A to each natural number in N	num that c	re is a way to assign a natural ber to every element of A such each natural number is assigned to tly one element of A
		c. A is of the form \$\${a_1,a_2,a_3,\dots}\$\$ for some sequence \$\$a_1,a_2,a_3,\dots\$\$		can assign a different natural ber to each element of A
(xxv	y) A	A and B be bounded non-empty sets. Followi	ng are two g	roups of statements:
		a. $\$\inf(A)\leq \inf(B)$ \$	b. \$\$\ii	$\inf(A)\leq \sup(B)$ \$
		c. $\frac{h}{\sup(A)\leq \inf(B)}$	d. \$\$\s	$up(A) \leq up(B) $
		Group – B		
		(Short Answer Type Q	uestions)	$4 \times 5 = 20$
2.		Examine the following function for continu	ity at origin:	5
		$\left(\frac{xe^{\frac{1}{x}}}{x}\right)$		
		$f(x) = \begin{cases} \frac{xe^{\frac{1}{x}}}{1+e^{x}} \\ 0 \text{ if } x \end{cases}$	$\frac{1}{x}$ if $x \neq 0$	0
		$\int_{0}^{\infty} if x =$	= 0	
3.		Define a Cauchy Sequence and also state th	e Cauchy Co	onvergence Criterion 5
4.	(a)	Test the convergence of the series $\sum \frac{(n^3+1)^{\frac{1}{3}}}{logn}$	<u>-n</u>	3
	(b)	Show that the function $f(x) = x^2$ is differentiated] 2
5.		Use Squeeze Theorem to determine the lim	it of the follo	owing sequences: 5
	(a)	$\{u_n\}n^{\frac{1}{n^2}}$		
	(b)	$n! \frac{1}{n^2}$		

(xxii) Which one is not partition of interval [1,5].

6.		Define Supremum and Infimum of a set. Also give examples.	5
7.		Let (X, d) be a metric space.	5
	(a)	Define the open ball $B_r(x)$ of radius $r > 0$ and center $x \in X$.	
	(b)	Define an open set $A \subset X$.	
	(c)	Show that the open ball $B_r(x) \subset X$ is an open set.	
		Group – C	
		(Long Answer Type Questions) 2 x 10	= 20
Ans	wer aı	ny two from the following	
8.		Every compact subset <i>F</i> of a metric space (X,d) is closed.	10
9.		Prove that a function f is integrable with respect to α on [a,b] if and only if for every $\varepsilon > 0$, there exists a partition P of [a,b] such that $U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon$.	10
10.		Prove that a necessary and sufficient condition for the convergence of a sequence $\{S_n\}$ is the, for each $\varepsilon > 0$ there exists a positive integer m such that $\left S_{n+p} - S_n\right < \varepsilon, \forall n \geq m \land p \geq l$	10
11.		State and prove Taylor's theorem.	10