

BRAINWARE UNIVERSITY

Term End Examination 2019 – 20

Programme - Master of Science in Microbiology

Course Name - Microbial Biochemistry

Course Code - MMB104

(Semester - 1)

Time	all	ott	·ha	2	П	Oure	20	M	:	400
I IIIIC	an	vu	cu.	_	п	OHES	. 711		ınıı	TPS

Full Marks: 60

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group -A

	(Multiple Choice	Type Question)	$20 \times 1 = 20$				
1.	Answer any twenty from the following						
(i)	Glucose is a monosaccharide and is a						
	a. Hexose	b. Pentose					
	c. Furanose	d. Both a and c					
(ii)	When glucose molecules are joined by α 1-4 linkage, type of carbohydrate obtained is						
	a. lactose	b. glycogen					
	c. Lipids	d. starch					
(iii)	Which of the following options is not a reducing sugar?						
	a. $C_nH_{2n}O_n$	b. $C_nH_{2n}O_{2n}$					
	c. $C_nH_2O_n$	$d. C_{2n}H_{2n}O_n$					
(iv)	Polysaccharides are						
	a. Proteins	b. Polymers					
	c. Acids	d. Oils					
(v)	D -Glucose and L- Glucose are						
	a. Stereo isomers	b. Optical isomers					
	c. Anomers	d. Keto- Aldose Isom	iers				
(vi)	Glycosidic bond in sucrose is						
	a. β1-2	b. α1-4					
	c. β1–4	d a1_2					

(vii)	pH of buffer solution depends upon concentration of							
	a. acid (-H ⁺)	b.	conjugate base (-OH ⁻)					
	c. salt	d.	both A and B					
(viii)	Buffers present in blood contain							
	a. HCO ₃ -	b.	hemoglobin					
	c. $H_2PO_4^-$	d.	all of them					
(ix)	Unfolding of regular secondary protein structure	re ca	auses					
	a. Large increase in the entropy of the protein	b.	No change in the entropy of the protein					
	c. Little increase in the entropy of protein	d.	Large decrease in the entropy of the protein					
(x)	What does first law of thermodynamics state?							
	a. Energy can neither be destroyed nor created	b.	Energy cannot be 100 percent efficiently transformed from one type to another					
	c. All living organisms are composed of cells	d.	Input of heat energy increases the rate of movement of atoms and molecules					
(xi)	Relation which relates enthalpy and entropy is							
	a. $\Delta G = \Delta H - T \Delta S$	b.	ΔG - ΔH					
	c. $\Delta G^{\circ} = -RT \ln K$	d.	both A and C					
(xii)	A positive Benedict's test is not given by							
	a. Sucrose	b.	Lactose					
	c. Maltose	d.	Glucose					
(xiii)	The optically inactive amino acid is							
	a. Glycine	b.	Serine					
	c. Threonine	d.	Valine					
(xiv)	The amino acid with a nonpolar side chain is							
	a. Serine	b.	Valine					
	c. Asparagine	d.	Threonine					
(xv)	Denaturation of proteins results in							
	a. Disruption of primary structure	b.	Breakdown of peptide bonds					
	c. Destruction of hydrogen bonds		Irreversible changes in the molecule					
(xvi)	At a pH below the isoelectric point, an amino acid exists as							
	a. Cation	b.	Anion					
	c. Zwitterion	d.	Undissociated molecule					

(xvii)	An amino acid that does not take part in α helix formation is					
	a.	Histidine	b.	Tyrosine		
	c.	Proline	d.	Tryptophan		
(xviii)	Prima	ry structure of a protein is formed by				
	a.	Hydrogen bonds	b.	Peptide bonds		
	c.	Disulphide bonds	d.	All of these		
(xix)	Isoele	etric pH of an amino acid is that pH at w	hich	it has a		
	a.	Positive charge	b.	Negative charge		
	c.	No net charge	d.	All of these		
(xx)	determ	the Lineweaver-Burk plot of Michaelis anned when V is the reaction velocity a mental data are expressed as	-Me at su	inten equation, K_m and V_{max} can be abstrate concentration S, the X-axis		
	a.	1/V	b.	V		
	c.	1/S	d.	S		
(xxi)	A signification	moidal plot of substrate concentration te	([S])) verses reaction velocity (V) may		
	a.	Michaelis-Menten kinetics	b.	Co-operative binding		
	c.	Competitive inhibition	d.	Non-competitive inhibition		
(xxii)	An inc	ducer is absent in the type of enzyme:				
	a.	Allosteric enzyme	b.	Constitutive enzyme		
	c.	Co-operative enzyme	d.	Isoenzymic enzyme		
(xxiii)	Hydro	lysis of fats by alkali is called				
	a.	Saponification number	b.	Saponification		
	c.	Both (a) and (b)	d.	None of these		
(xxiv)	Enzyn	nes are different from catalysts in		i e		
	a.	Being proteinaceous	b.	Not used up in reaction		
	c.	Functional at high temperature	d.	Having high rate of diffusion		
(xxv)	Prosta	glandins have role in:				
	a.	Inflammation	b.	blood clotting		
	c.	Fever	d.	all of these		

Group – B

		(Short Answer Type Questions) 4	x = 5 = 20				
Ans	wer a	ny four from the following					
2.	W	What are high energy compounds? Is ATP a high energy compound?					
3.	How do the laws of thermodynamics apply to living systems? What is Gibbs free energy?						
4.	What are the applications of first law of thermodynamics? Which is the most 2+ important high energy compound? Why?						
5.	5. Who has discovered pH scale? Why are pH and buffer important in biological systems?						
6.	6. What are epimers and anomers? How many Epimers of glucose are there? 4+						
7.	7. What are nucleosides and the nucleotides? What is the difference between the nucleosides and the nucleotides?						
		Group – C					
		(Long Answer Type Questions) 2 x	10 = 20				
Ans	wer ar	ny two from the following					
8.	(a)	Write down the importance of pH in biological systems.	5				
	(b)	How do you calculate Henderson-Hasselbalch equation?	5				
9.	(a)	How can a biological system be affected by a change in pH levels?	5				
	(b)	Write a short note on oxidative phosphorylation.	5				
10.	(a)	What is the basic structure of a biological membrane?	7				
	(b)	What are the functions of biological membrane?	3				
11.	(a)	What happens during electron transport chain? Explain that in detail with a diagr	am. 8				
	(b)	What are the end products of the electron transport chain?	2				