

BRAINWARE UNIVERSITY

Library
Brainware University
398, Ramkrishnapur Road, Barasat
Kolkata, West Bengal-700125

Term End Examination 2024-2025
Programme – M.Sc.(MATH)-2024
Course Name – Linear Algebra
Course Code - MSCMC101
(Semester I)

Full Marks: 60 [The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.] Group-A (Multiple Choice Type Question) 1 x 15=15 1. Choose the correct alternative from the following: If $T: V \to W$ be a linear mapping, then identify the correct option a) $\dim (Ker T) + \dim (Im T) = \dim (V)$ b) $\dim (Ker T) + \dim (Im T) = \dim (W)$ c) dim (Ker T) + dim (Im T) = 3 d) None of these (ii) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation defined by T(x, y, z) = (x - y, x - z), then identify the dimension of the nullspace of T a) 0 b) 1 d) 3 If S is a subspace of a vector space (V,+,.) over R, where R is the set of all real numbers. Then select the true statement. b) $\alpha + 2\beta \in S$ whenever $\alpha, \beta \in S$ a) $\alpha + \beta \in S$ whenever $\alpha, \beta \in S$ d) All of a, b, c is true. c) $-\alpha + \beta \in S$ whenever $\alpha, \beta \in S$ (iv) Let V be a vector space over the set of all real numbers R. Let θ be the zero vector of V. Then identify $2.\theta = ?$ b) θ a) 1 d) None of these Let A and B be two subspaces of a vector space V, then select the correct statement b) both $A \cap B$ and $A \cup B$ are subspaces of $A \cap B$ is a subspace of V. d) neither $A \cap B$ nor $A \cup B$ are subspaces c) $A \cup B$ is a subspace of V. Select the correct option: A vector space V is finite dimensional if it has

a)	finite basis
c)	no basis

- b) finite elements
- d) None of the above
- (vii) Let A and B be square matrices of order 3. If |A| = 3 and |B| = -1 then examine

$$|2A\cdot 4B|=?$$

- (viii) If $\alpha = (1,2,3,4)$ and $\beta = (2,0,-3,1)$ then examine $\|\alpha \beta\| = (2,0,-3,1)$

b) 3√30

- If $\lambda \neq 0$ is an Eigen value of a matrix A then compute $\det(A \lambda I) =$
 - a) λ c) 2λ

- b) λ d) 0
- Choose the correct option: Any set of linearly independent vectors can be orthonormalized by the
 - Cramer's rule

- Sobolev Method
- Gram-Schmidt procedure
- Pound-Smith procedure
- (xi)

If $\lambda = 1$ is an Eigen value of the matrix $\begin{bmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{3}{2} \end{bmatrix}$ then evaluate the corresponding

Eigen vector

$$\begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

 $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$

- If $V = R^3$ be equipped with inner product $(x, y) = x_1y_1 + x_2y_2 + x_3y_3$. Then select the set of vectors that are linearly independent.
- b) $\{(0,1,0),(0,-1,0),(0,0,1)\}$

Choose the right option: The	quadratic form $Q(x, y, z) = (x - y)$	$^{2} + 3z^{2}$ is	
^{a)} positive definite	b) positive semidefinit	tc	
Indefinite	None of these		
The leading principal minors of a 4 by 4 matrix are $ A1 = -1$, $ A2 = 1$, $ A3 = 2$, and $ A4 = A = 0$. Then select the correct statement			
the matrix is negative semidefinite	its definiteness canno determined with this		
the matrix is indefinite	None of these		
Select the correct option: The leading principal minors of a 4 by 4 matrix are $ A1 = -1$, $ A2 = 1$, $ A3 = -2$, and $ A4 = A = 1$. Then, the matrix is			
negative definite	indefinite		
positive definite and negative definite	ve None of these		
	Group-B		
(Short Answer Type Questions)	3 x 5=15	
Illustrate that $q(Y) = ax^2 + bxy + cy^2$ is $a>0$ and the discriminant $D = b^2 - 4ac$	is positive definite if and only if < 0.	(3)	
3. Identify the characteristic polynomial of $\begin{bmatrix} 1 & -i \\ i & 1 \end{bmatrix}$.		(3)	
4. Identify the row rank of the matrix $\begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}$.	Brainware University 398, Ramkrishnapur Road, Barasat Kolkata, West Bengal-700125	(3)	
5. Explain the statement, "The matrix $A = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$ is r	(3)		
Let $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$. Formulate a matrix P such	(3)		
Justify the statement, "The quadratic form :	or $x^2 + 2y^2 + 3z^2 - 2xy + 4yz$ is	(3)	

7. Use Gaussian elimination to construct the solution for the given system of equations: 3x + y - z = 1, x - y + z = -3, 2x + y + z = 0.

- 8. Let V be a vector space over the field F. Then justify that intersection of any collection of subspace of V is also a (5) subspace of V.
- Examine whether the set of vectors formed by the matrices A, B and C are dependent where $A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -1 \\ 2 & 2 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & -5 \\ -4 & 0 \end{bmatrix}$ (5)

10. Describe the quadratic form to normal form of xy + yz + zx. Then evaluate the rank and signature of the same.

If α and β be any two vectors in an inner product space $(\mathbb{R}^2, \|...\|)$, then illustrate that $\|\alpha + \beta\| \le \|\alpha\| + \|\beta\|$.

^{12.} Justify that set of all symmetric matrices of order $n \times n$ form a subspace of the vector space of all $n \times n$ matrix over the field F.

- Explain elementary row transformation on a matrix and with the help of these, solve AX = 0 where $A = \begin{bmatrix} 3 & -1 & 2 \\ 2 & 1 & 1 \\ 1 & -3 & 0 \end{bmatrix}$.

(5)

