

Brainware University
398, Ramkrishnapur Road, Barasal

BRAINWARE UNIVERSITY

Term End Examination 2024-2025
Programme – M.Sc.(MATH)-2024
Course Name – Real Analysis
Course Code - MSCMC102
(Semester I)

Full Marks: 60

Time: 2:30 Hours

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question)

1 x 15=15

- 1. Choose the correct alternative from the following:
- (i) Select the correct option. If x is a real number, then there exists a natural number n such that

a) n < x

b) n > x

c) $\mathbf{n} = |\mathbf{x}|$

- d) None of these
- (iii) Identify the set of convergence of the series $\sum_{k=1}^{\infty} k^k x^k$

a) [0,1]

b) [0,1)

c) {0.1}

- d) {0}
- Select the correct option. Let $\sum_{k=0}^{\infty} a_k (x-c)^k$ be a power series with radius of convergence R. If $R=\infty$, then
 - the series converges only at c.
- b) the series converges absolutely for all x.
- c) the series converges absolutely for all x satisfying |x c| < R.
- None of these
- (iv) Write the correct expansion for $\frac{x}{1+x^2}$, -1 < x < 1

a) $\sum_{k=1}^{n} (-1)^k x^{2k+1}$

b) $\sum_{i=1}^{k} (-1)^k x^{2k+1}$

c) $\sum (-1)^{k+1} x^{2k+1}$

- d) None of these
- (v) Write the correct option. 2 log 2 is represented by the series

a) $\frac{1}{1.2} - \frac{1}{2.3} + \frac{1}{3.4} - \dots$

b) $-\frac{1}{1.2} + \frac{1}{2.3} - \frac{1}{3.4} + \dots$

c) $1 + \frac{1}{1.2} - \frac{1}{2.3} + \frac{1}{3.4} - \dots$

- d) $-1 + \frac{1}{1.2} \frac{1}{2.3} + \frac{1}{3.4} \dots$
- (vi) Write the correct option. A function f is defined on $\left(-\frac{1}{3}, \frac{1}{3}\right)$ by f(x) = 1 + 2.3x + 1
 - $3.3^2x^2 + \dots + n.3^{n-1}x^{n-1} + \dots$. Then f is
 - a) continuous on $\left(-\frac{1}{3}, \frac{1}{3}\right)$

b) continuous on $\left(-\frac{1}{3}, \frac{1}{3}\right]$

c) continuous on $\left[-\frac{1}{3}, \frac{1}{3}\right)$

- d) None of these
- (vii) Select the correct option. If a vector space X is spanned by 10 vectors, then
 - a) $\dim X \leq 10$

b) dim $X \ge 10$

c) dim X ≥ 11

d) None of these

Library 398, Ramkrishnapur Road, Barasat Kolkala, West Bengal-700125

- (viii) Select the correct option. If $A \in L(\mathbb{R}^n, \mathbb{R}^m)$, then
 - a) $\infty \ge ||A|| > 0$

b) $\infty > ||A|| > 0$

c) $\infty > ||A|| \ge 0$

- d) $\infty > ||A|| > -\infty$
- (ix) Select the correct option. If a function F(x) is the integral of another function f(x) with respect to x, then:
 - a) F'(x) = f(x)

b) F'(x) = 1/f(x)

c) $F'(x) = \int f(x) dx$

- d) F'(x) = f'(x)
- (x) Select a curve from the following curves that is not rectifiable.
 - a) $y = x^{\frac{2}{2}}$, for x in [0, 1]

- b) $y = \frac{1}{x}$, for x in $[1, \infty)$
- c) y = cos(x), for x in $[0, 2\pi]$
- d) $y = e^{-x}$, for x in $[0, \infty)$
- (xi) Select the correct option. To integrate a vector-valued function over an interval [a, b] means
 - a) Finding the magnitude of the vector at points in [a, b].
- b) Finding the average of all vector values in [a, b].
- Finding the area under the curve traced by the vector-valued function in [a, b].
- d) Finding the tangent to the vector-valued function at points in [a, b].
- (xii) Select the correct option. A curve $\gamma:[a,b]\to R^k$ is rectifiable if
 - a) γ' exists in [a, b]

b) γ' exists and continuous in [a, b]

c) $\gamma'(a) = \gamma'(b)$

- d) None of these
- (xiii) Select the length of the curve $\gamma(t) = (\cos t, \sin t), t \in [0, 2\pi]$.
 - a) 1

b) 2π

c) (

- d) None of these
- (xiv) If f is continuous on [a, b], then select the integral that does not exist
 - a) $\int_a^b f(x)d(x^2)$

b) $\int_{a}^{b} f(x)d(2+x)$

c) $\int_a^b f(x)d(x^2+x)$

d) None of these

Let $f(x) = [x], x \in [0,3]$. Select the value of $\int_0^3 f(x) dx$

b) 7

d) 4

Group-B (Short Answer Type Questions)

3 x 5=15

Establish that $\frac{\pi^2}{9} < \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{x}{\sin x} dx < \frac{2\pi^2}{9}$. (3)

- 3. Let f(x) be the sum of the power series $\sum_{n=0}^{\infty} a_n x^n$ on (-R, R) for some R > 0. If f(x) = f(-x) for all $x \in (-R, R)$, deduce that $a_n = 0$ for all odd n.
- 4. Let a function $f:[a,b] \to \mathbb{R}$ be integrable on [a, b]. Then |f| is integrable on [a, b]. (3) Examine whether the converse is true or not.

5. Examine that
$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right) = 1$$
 (3)

6. Let A and B be two bounded subsets of **R** such that $x \in A$, $y \in B \Rightarrow x \leq y$. Justify (3) that $supA \leq infB$.

OR

Let $f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}, (x,y) \neq (0,0)$ = 0, (x, y) = (0,0)

Library
Brainware University
398, Ramkrishnapur Road, Barasat
Kolkata, West Bengal-700125

Write the value of $f_{xy}(0,0)$ and $f_{yx}(0,0)$.

Group-C (Long Answer Type Questions)

5 x 6=30

(5)

- 7. Show that every sequence of real numbers has a monotone subsequence.
- Assuming the expansion $\log(1+x) = x \frac{x^2}{2} + \frac{x^2}{3} \frac{x^4}{4} + \cdots$ for $-1 < x \le 1$, then deduce that $\int_0^1 \frac{\log(1+x)}{x} dx = 1 \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \cdots$. (5)
- 9. Let $f(x) = [x], x \in [0,3]$. Deduce that f is integrable on [0,3]. Evaluate $\int_0^3 f$.

- ^{10.} If S be a non-empty compact subset of \mathbb{R} , then examine that sup S and inf S belong to S.
- (5)

(5)

11. Let $c \in \mathbb{R}$ and a real function f be such that f'' is continuous on some neighbourhood of c. Justify that $\lim_{h\to 0} \frac{f(c+h)-2f(c)+f(c-h)}{h^2} = f''(c)$.

(5)

(5)

- 12. Let a function $f: [a, b] \to \mathbb{R}$ be integrable on [a, b]. If M be the supremum and m be the infimum of f on [a, b] then justify that
 - $m(b-a) \le \int_a^b f \le M(b-a)$

ΩR

Let $f: [a, b] \to \mathbb{R}$ be continuous on [a, b]. Then justify that there exists a point $c \in [a, b]$ such that $\int_a^b f = f(c)(b - a)$.

Brainware University
398, Ramkrishnapur Road, Barasal
Kolkata, West Bennal-700125