

BRAINWARE UNIVERSITY

Term End Examination 2024-2025 Programme – B.Tech.(CSE)-AIML-2023/B.Tech.(CSE)-DS-2023 Course Name – Differential Equation and Complex Analysis Course Code - BSCM301/BSCD301 (Semester III)

Full Marks: 60 Time: 2:30 Hours

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question)

1 x 15=15

- 1. Choose the correct alternative from the following:
- (i) Select the correct option: Let γ be the curve $g(x, y) = x^3y + xy^3 = 5$. Then the value of $\int_{V} \vec{\nabla} g \cdot dr$
 - a) 2

b) 4

c) 0

- d) None of the mentioned
- (ii) Select the correct option.: If i + j + k, 2i 4k, $i + \lambda j + 3k$ are coplanar, then λ is
 - a) 2

b) 4/3

c) 5/3

- d) None of these
- (iii) Select the vector field from the following that is conservative
 - a) $F(x, y) = (xe^x + y)\hat{i} + x\hat{j}$
- b) $F(x, y) = (xe^{x} + y)\hat{i} + 2x\hat{j}$
- c) $F(x, y) = (xe^x + 2y)\hat{i} + x\hat{j}$
- d) None of the mentioned
- (iv) Let $F(x, y) = (ax^2y + y^3 + 1)\hat{i} + (2x^3 + bxy^2 + 2)\hat{j}$ be a vector field, where a and b are constants. Select the values of a and b respectively such that the vector field F becomes conservative.
 - a) 3.6

b) 6.3

c) 1.2

- d) 2, 1
- (v) Select the flux of $F = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ through the sphere of radius a and center at the origin. Take \hat{n} pointing outward.

Library a) 4π Brainware University Brainware University Road, Barasal 398, Ramkrishnapur Road, Barasal Kolkala, West Bengal-700125	b) $4\pi a^2$ d) None of these	
(vi) Let z_0 be a point in the z plane. If $\lim_{z \to z_0} \frac{1}{f(z)} =$	= 0, then write $\lim_{z \to z_0} f(z) =$	
a) 0 c) Does not exist	b) ∞ d) None of these	
(vii) Write the value of the limit $\lim_{z \to (-1)} \frac{iz+3}{z+1}$		
a) 0 c) Does not exist (viii) Write the correct one: The function $f(z) = \begin{cases} 0 & \text{one } z \\ 0 & \text{one } z \end{cases}$	b) $_{\infty}$ d) None of the mentioned $\begin{cases} z^2, & z \neq 1 \\ 0, & z = 1 \end{cases}$ is discontinuous at	
a) 0 c) everywhere in the complex plane	b) 1 d) nowhere in the complex plane	
(ix) Choose the correct option: If the real part of then the analytic function is	an analytic function be $u = x^2 - y^2$,	
a) $iz^2 + c$ c) $z + c$	b) $-iz^2 + c$ d) $z^2 + c$	
(x) Choose the correct option: If $f(z)$ is analytic and non-zero in a domain D , then in D , $\log f(z) $ is		
a) Analytic	b) A constant	
 (xi) Identify the correct answer. If a function is a domain except at finitely many points, then to 		
a) _{Zeros}	b) Singularities	
c) Poles	d) Simple points	
(xii) Identify the type of singularity for the function $f(z) = e^z$ at $z = \infty$		
 a) isolated essential singularity c) ordinary point 	b) pole	
(xiii) Identify the correct one: $\frac{2!}{2\pi i} \int_{ z =3} \frac{z^2+3z+4}{(z-1)^3} dz$	d) None of these	
a) 2	p) 0	
c) πi	d) None of these	
$\eta(\gamma; a)$ and $\alpha \in \gamma$, then identify the index (or, winding) number		
a) an integer	b) a rational number	
c) an irrational number	d) a fraction	

For $ z < 2$, identify the series expansion of the function $f(z) = \frac{1}{z-2}$ a) $\sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}}$ b) $-\sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}}$ c) $\sum_{n=0}^{\infty} \frac{z^n}{2^n}$ d) $\sum_{n=0}^{\infty} \frac{z^{n+1}}{2^{n+1}}$	Brainware University 398, Ramkrishnapur Road, Inc. Kolkata, West Rondal-7, Inc. 1, Inc. Kolkata, West Road, Inc. Kolkata,
Group-B (Short Answer Type Questions)	3 x 5=15
2. Define irrational vector field and solenoidal vector field with example.	(3)
3. Calculate the Taylor series representation of $f(z) = 1/(z^2-3z+2)$ about the origin.	(3)
 Illustrate the concept of harmonic conjugate of a harmonic function and describe it with an example. 	(3)
5. Solve the differential equation $(4D^2 + 4D - 3)y = e^{2x}$	(3)
6. Evaluate the value of the following integral $\int_C \frac{\sin z}{(z-2)(z-3)} dz$, C is the circle $ z =2.5$	(3)
OR Conclude Cauchy's Residue theorem.	(3)
Group-C (Long Answer Type Questions)	5 x 6=30
7. Identify the residues of the function $\frac{z+1}{z^2(z-3)}$ at its singularities.	(5)
8. Evaluate $\int_C \frac{z^3}{z^2+5z+6} dz$, given that C is the circle $ z =1$, positively oriented	l. (5)

9. Calculate the solution of the differential equation $y'' + y = \sec x$ using the Library method of variation of parameters. (5)

Brainware University 398, Ramkrishnapur Road, Barasat Kalkata, West Bennal-700125

- Kolkata, West Bengal-700125

 10. Illustrate if the functions $z\bar{z}$ and z^2 are analytic. If so, then determine the domain of analyticity.
- (5)
- 11. Use Stokes theorem to recognize $\int_{c} \vec{F} \cdot d\vec{r}$, $\vec{F} = z^{2}\hat{\imath} + y^{2}\hat{\jmath} + x\hat{k}$ and C is the triangle with vertices (1,0,0), (0,1,0) and (0,0,1) with counter-clockwise rotation. (5)
- Solve the integral $\oint \frac{z^2 dz}{z^2 1}$ around the unit circle with center at (a) z = 1, (b) z = -1.

OR

Solve the integrals
$$\oint \frac{z^2+1}{(z-1)^2} dz$$
 and $\oint \frac{\cos z}{z^3} dz$ around the circle $|z|=2$. (5)
