

Library Brainware University 398, Ramkrishnapur Road, Barasal Kolkala, West Bengal 700125

BRAINWARE UNIVERSITY

Term End Examination 2024-2025
Programme – Dip.CSE-2022/Dip.CSE-2023
Course Name – Data Structures
Course Code - DCSE-PC301
(Semester III)

Full Marks : 60					Time : 2:30 Ho	urs
[The figure in the margin indicate	s full m	arks. Candida	ites are re	quired to give 1	their answers in the	ir

own words as far as practicable.]

	Grou	p-A				
_	(Multiple Choice T	ype Question)	1 x 15=15			
1.	Choose the correct alternative from the followin	g:				
(i)	(i) Identify the data structure that follows the First-In, First-Out (FIFO) principle.					
	a) Linked List	b) Stack				
	c) Queue	d) Array				
(ii)	Select the term that refers to a data structure where elements are added and removed from the same end.					
	a) LIFO	b) FIFO				
	c) Priority queue	d) Deque				
(iii)	Select the term that describes a contiguous block of memory used for storing multiple					
	elements of the same data type.	big a	=			
	a) Linked list	b) Queue				
	c) Array	d) Stack				
(iv)	Select the type of linked list where the last node points back to the first node, forming a closed loop.					
	a) Singly Linked List	b) Doubly Linked List				
	c) Circular Linked List	d) Array				
(v)	Select the algorithm used to merge two sorted list.	linked lists into a single sorted linked				
	a) Linear Search	b) Binary Search				
	c) Merge Algorithm	d) Breadth-First Search				
(vi)	Identify the algorithm used to traverse a linked list and visit each node exactly once, usually recursively.					
	a) Linear Search	b) Binary Search				
	c) Depth-First Search	d) Breadth-First Search				
(vii	Select the algorithm used to traverse a linked I same depth before moving to the next level.	ist level by level, visiting all nodes at th	ie			
	a) Linear Search	b) Binary Search				

	(vii	c) Depth-First Search i) Identify the sorting algorithm elements, and swaps them if	 d) Breadth-First Search i that repeatedly steps through the list, compares adjacent they are in the wrong order. 			
	(ix)	a) Heap Sort	b) Bubble Sort d) Insertion Sort hat is considered an in-place, stable sorting algorithm that	:		
	(x)	a) Merge Sort c) Bubble Sort Trace the sorting algorithm th smallest (or largest) element	b) Quick Sort d) Selection Sort nat is based on the principle of repeatedly selecting the from the unsorted part and moving it to the sorted part.			
	(xi)	a) Quick Sortc) Merge SortCite the sorting algorithm that where memory usage is a contract.	b) Bubble Sort d) Selection Sort t is well-suited for sorting small datasets or for situations ocern.			
	(xii)	a) Merge Sortc) Quick SortTrace the search technique th	b) Bubble Sortd) Insertion Sortat has a time complexity of O(n) in the average case.			
	(xiii)	a) Binary Search c) Exponential Search	b) Interpolation Search d) Linear Search at is used in computer graphics to find the closest color			
	(xiv)	a) Interpolation Search c) Exponential Search Select the search technique th phone directory.	b) Binary Search d) Linear Search nat can be used to quickly locate an item in a sorted			
	(xv)	a) Binary Search c) QuickSort Cite the sorting algorithm tha scenarios, with an average tim	b) Hashing d) Linear Search t is known for its efficiency in the average and best-case ne complexity of O(n log n).			
		a) Bubble Sort c) Heap Sort	b) Merge Sort d) Quick Sort			
			Group-B (Short Answer Type Questions)	3 x 5=15		
 Define a stack data structure and explain its LIFO (Last-In, First-Out) property. State the main operations that can be performed on a stack. Develop the binary tree (B-tree) from the given traversals: Preorder: / + * 1 \$ 2 3 4 5 Inorder: 1 + 2 * 3 \$ 4 - 5 						
	5. Illustrate the process of binary search with a simple example. 6. Explain the main advantage of bubble sort over other sorting techniques. OR					
	Sele	ect a scenario where bubble so	ort would be a suitable sorting method.	(3)		
			Group-C (Long Answer Type Questions)	5 x 6=30		
7.	. An	alyze the key differences betw	veen a binary tree and a B-tree in terms of structure, use	(5)		
cases, and suitability for large datasets. 3. Identify the key features of a deque (double-ended queue) data structure and provide examples of scenarios where deques are valuable.						

- access. Explain how to insert and delete elements in a circular linked list. Define a circular linked list and discuss its applications in situations requiring cyclical data (5)
- 10. Summarize the key factors to consider when selecting a searching technique for a specific problem, including dataset characteristics, time complexity, and space complexity (5)
- 11. Compare and contrast the sorting algorithms bubble sort and selection sort, analyzing their (5) suitability for different types of datasets.
- 12. Consider the key differences between a threaded binary tree and a regular binary tree along with decide which tree structure is more efficient for in-order traversal and why. 9 R

(5)

(5)

Decide on the most suitable tree structure for implementing a database index.
