



## **BRAINWARE UNIVERSITY**

Library **Brainware University** 398, Ramkrishnapur Road, Barasal Kolkata, West Bengal-700125

## Term End Examination 2024-2025 Programme - B.Tech.(RA)-2022 Course Name - Signal Processing and Implementation to Automation Course Code - PEC-ECR501A (Semester V)

Full Marks: 60

Time: 2:30 Hours

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

## Group-A

(Multiple Choice Type Question)

1 x 15=15

- Choose the correct alternative from the following:
- (i) The discrete time function defined as u(n)=n for n≥0 and u(n)=0 for n<0 is represented as
  - a) Unit sample signal

b) Unit step signal

c) Unit ramp signal

- d) None of the mentioned
- (ii) Identify the average power for an energy signal
  - a) infinite

b) finite

c) zero

- d) cannot be defined
- (iii) Determine energy and power of the signal  $x(n) = [1 + e^{-5n}]u(n)$ 
  - a) E= ∞, P=1/2W

b) E=1/2W, P=∞

c) E=0 , P=∞

- d) cannot be defined
- (iv) Identify the period of the function cos[(pi/4)(n-1)]
  - a) 1/8 sec

b) 8sec

c) 4sec

- d) 1/4sec
- (v) The function given by the equation x(n)=1, for n=0; x(n)=0, for  $n\neq 0$  is represented as
  - a) Step function

b) Ramp function

c) Triangular function

- d) Impulse function
- (vi) The system y(n) = x(n) + 2x(n+3) is described as
  - a) non causal

b) causal

c) anti-causal

- d) None of these
- (vii) The system y(n) = x(-n-3) is expressed as
  - a) BIBO stable

b) stable

c) unstable

- d) cannot be defined
- (viii) The system y(n) = x(n) 2x(n-1) is expressed as

|                                                                       | a) linear                                                                                                                                                             | INCOL                                                                                                        | Kata, West Bengal |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                       | c) nonlinear                                                                                                                                                          | b) time variant                                                                                              | - 290,            |
|                                                                       |                                                                                                                                                                       | d) none of these                                                                                             |                   |
| 1.2.7                                                                 | Identify the algorithm where the phase factors are multiplied before the add and subtract operations                                                                  |                                                                                                              |                   |
|                                                                       | a) DIT radix-2 FFT                                                                                                                                                    | b) DIF radix-2 FFT                                                                                           |                   |
|                                                                       | c) inverse DFT                                                                                                                                                        | d) DIT radix-2 FFT and inverse DFT                                                                           |                   |
| (x)                                                                   | Identify why Z-transform used for signal processing                                                                                                                   |                                                                                                              |                   |
| (xi)                                                                  | <ul> <li>a) To convert digital signals into analog form</li> <li>c) To quantize signals for transmission</li> <li>Identify Z transform of unit step signal</li> </ul> | <ul><li>b) To analyze signals in the frequency domain</li><li>d) To perform convolution operations</li></ul> |                   |
|                                                                       | a) 1/(z-1)                                                                                                                                                            | b) z/(1-z)                                                                                                   |                   |
|                                                                       | c) $z/(z-1)$                                                                                                                                                          | d) none of these                                                                                             |                   |
| (xii)                                                                 | The width of the main-lobe in rectangular window                                                                                                                      | v spectrum is chosen as ,                                                                                    |                   |
|                                                                       | a) 4*pi/N                                                                                                                                                             | b) 16*pi/N                                                                                                   |                   |
|                                                                       | c) 8*pi/N                                                                                                                                                             | d) 2*pi/N                                                                                                    |                   |
| (xiii                                                                 | ) Choose the correct alternative that IIR stand for i                                                                                                                 | n the context of filter design                                                                               |                   |
| (xiv                                                                  | <ul><li>a) Infinite Impulse Response</li><li>c) Integrated Input Resonance</li><li>) Choose a type of filter that is known for its equi r</li></ul>                   | b) Irregular Impulse Rejection<br>d) Iterative Input Reconstruction<br>ipple behavior in the frequency doma  | ain               |
| •                                                                     | a) Butterworth                                                                                                                                                        | b) Chebyshev Type I                                                                                          |                   |
|                                                                       | c) Chebyshev Type II                                                                                                                                                  | d) Elliptic                                                                                                  |                   |
| (xv)                                                                  | Choose the purpose of windowing in signal proce                                                                                                                       | ssing                                                                                                        |                   |
|                                                                       | a) To reduce the amplitude of a signal b) To remove high-frequency components                                                                                         |                                                                                                              | nents             |
|                                                                       | c) To smooth the signal and reduce spectral leakage                                                                                                                   | d) To increase the sampling rate                                                                             |                   |
|                                                                       | Grou                                                                                                                                                                  | о-В                                                                                                          |                   |
|                                                                       | (Short Answer Ty                                                                                                                                                      |                                                                                                              | 3 x 5=15          |
|                                                                       |                                                                                                                                                                       |                                                                                                              |                   |
| 2. Describe unit step and unit ramp relating to discrete time signal. |                                                                                                                                                                       |                                                                                                              | (3)               |
| 3. Describe linear and non-linear system.                             |                                                                                                                                                                       |                                                                                                              | (3)               |
| 1                                                                     | Determine whether the following signal is periodic signal, then calculate fundamental period $x(n) = \cos\left(\frac{n}{9} - \pi\right)$                              |                                                                                                              | (3)               |
| 5. E                                                                  | xplain Hamming window.                                                                                                                                                |                                                                                                              | (3)               |
| 6.<br>I                                                               | Evaluate z-transform and ROC of the sequence.                                                                                                                         |                                                                                                              | (3)               |
|                                                                       | $\mathbf{x}(\mathbf{n}) = \left\{ -3, -2, -1, 0, \frac{1}{4}, 0, 3, -1, 2 \right\}$                                                                                   |                                                                                                              |                   |
|                                                                       | ( 2, 2, 1,0,1,0,5,-1,2)                                                                                                                                               |                                                                                                              |                   |



OR

Evaluate z-transform and ROC of the sequence.  $x(n) = \{1, 0, 3, -1, 2\}$  (3)

Group-C

(Long Answer Type Questions)

5 x 6=30

(5)

Calculate the z transform and ROC of the given signal:

 $x(n) = a^n u(n) + b^n u(-n-1)$ 

- Identify the transfer function and impulse response of the system described by the difference equation through z-transform y(n)-3y(n-1)-4y(n-2)=x(n) 2x(n-1).
- 9. Determine whether the following signal is periodic or aperiodic? If periodic signal, then calculate fundamental period.  $x(n) = \cos\left(\frac{8\pi}{5}n 1\right)$
- 10. Determine the discrete Fourier transform of the following sequence for N=4  $x(n) = \{1,1,1,1\}.$  (5)
- 11. Explain whether or not the following system is linear or non-linear:  $y(n) = \cos[x(n)]$  (5)
- 12. Write the procedure for design of low pass digital butterworth filter. (5)

OR

Write the bilinear transformation method to design IIR filter.

(5)