

BRAINWARE UNIVERSITY

Term End Examination 2024-2025
Programme – B.Sc.(BT)-Hons-2022
Course Name – Biostatistics
Course Code - BBTD504A
(Semester V)

Full Marks: 60

Time: 2:30 Hours

[The figure in the margin indicates full marks: Candidates are required to give their answers in their own words as far as

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

(Multiple Choice Type Question) 1 x 15=15 Choose the correct alternative from the following: (i) The data on income levels (high, medium, low) of 50 people is described as a) Nominal data b) Discrete data c) Ordinal data d) None of the these

(ii) A data on colours of 5 flowers (viz. green, green, pink, white, red and orange) is identified as
 a) Nominal data
 b) Frequency data
 c) Non-frequency data
 d) Ordinal data
 (iii) The name of the method of collection of data on every individual of the source is

a) Sample survey b) Census

c) Pilot survey
(iv) A good measure of central tendency is described as
a) affected by extreme values
b) does not consider extreme values

c) is 0 for extreme values
(v) Among A.M., median and mode, the robust measure is identified as
a) A.M.
b) Median

c) Mode d) None of these (vi) The coefficient of variation of a data with A.M. 30 and S.D. 5 is approximately calculated as

a) 20% b) 16.67% c) 14.5% d) 35.2%

(vii) The quartile deviation of the data 11,12, 14, 17, 20 is computed as a) 2.6 b) 3.5

a) 2.6 b) 3.5 c) 2.7 d) 3

(viii) A distribution with mean=median=mode is interpreted as

a) positively skewed b) symmetric c) negatively skewed d) none of these

(ix) A moderately skewed distribution with mean = 3.4, median = 1.3 and s.d.=0.9, the coefficient of skewness is computed as

a) 6 c) 8 b) 7 d) 9

(x) The lower class boundary of a class boundary 36.5-40.5 is identified as

	(xi)	a) 35 c) 35.5 Select the cor	rect option for Ba	ves' Theorem.	b) 36 Parasat, Kokata -700125 d) 36.5	
			B A)P(A) P(B A)P		b) P(A B) = P(A)P(B)/P(A∩B)d) P(A B) = P(B A)P(A)/P(B)	
	(xii)		eriment is describ	ped as	a) (((b) - ((b) / ((a))) ((b)	
		 a) a statistical but cannot k c) an experime Let E(T)=θ=E(S) 	experiment whose predicted beforent that cannot both, where T, S are li	se outcomes are known rehand. e repeated further.	 b) an experiment whose outcomes can be predicted beforehand. d) None of these. nple observations. If Var (T) < Var(S), then 	ted
		identify correct			the name of the State of the St	
			sed linear estima		b) T is BLUE	
	(viv)		ent linear unbias		d) T is consistent best linear unbiased estimator.	
	(XIV)		t' is used to meas	sure the Se	elect correct option.	
		a) Mean Deviat	tion		b) Goodness of Fit	
	(vv)	c) Trend	t Δ it is found the	at MSA-25 and dograps of	d) Variation f freedom = 2, then compute the Sum of	
	(×v)	squares of trea		at MISA-25 and degrees o	if freedom = 2, then compute the sum of	
		a) 12.5			b) 50	
		c) 25			d) 100	
		-,			4) 100	
				Group	о-В	
				(Short Answer Ty	pe Questions) 3 x	¢ 5=15
2.	Write	a short note on	scatterplot with	example.		(3)
3.		ne regression elation coeffic		y_X and b_{XY} . Show	that $b_{YX} \times b_{XY} = r^2$ where r is the Pea	arson's (3)
		nation Coeffic				
4.				e following frequency dist	tribution of a continuous variable.	(3)
4.	Comp	pute the frequer			tribution of a continuous variable.	(3)
4.	Comp		ncy densities in th	e following frequency dist Frequency density	tribution of a continuous variable.	(3)
4.	Comp	pute the frequer	ncy densities in th		tribution of a continuous variable.	(3)
4.	Comp	pute the frequer ass Boundary 100 - 120	ncy densities in th Frequency 30		tribution of a continuous variable.	(3)
4.	Comp	pute the frequer ass Boundary 100 - 120 120 - 150	ricy densities in the Frequency 30 25		tribution of a continuous variable.	(3)
4.	Comp	pute the frequer ass Boundary 100 - 120 120 - 150 150 - 190 190 - 230 230 - 260	Frequency 30 25 44		tribution of a continuous variable.	(3)
4.	Comp	pute the frequer ass Boundary 100 - 120 120 - 150 150 - 190 190 - 230	Frequency 30 25 44 23		tribution of a continuous variable.	(3)
	Cli	pute the frequer ass Boundary 100 - 120 120 - 150 150 - 190 190 - 230 230 - 260 260 - 300	Frequency 30 25 44 23 37 18			(3)
5.	Cli	pute the frequer ass Boundary 100 - 120 120 - 150 150 - 190 190 - 230 230 - 260 260 - 300	Frequency 30 25 44 23 37 18	Frequency density two measures of dispersion, calculate $(i) E(X)$, (ii)	on. $E(X^2)$, (iii) $Var(X)$.	(3)
5.	Cli	pute the frequer ass Boundary 100 - 120 120 - 150 150 - 190 190 - 230 230 - 260 260 - 300	Frequency 30 25 44 23 37 18 spersion and any soution Bin(10, 0.6)	Frequency density two measures of dispersion	on. $E(X^2)$, (iii) $Var(X)$.	(3)

LIBRARY Brainware University Barasat, Kukata -700125

Group-C (Long Answer Type Questions)

5 x 6=30

7.	Suppose $X \sim P(2)$. Calculate the measure of kurtosis of β_2 . Also calculate γ_2 and comment on the nature of its kurtosis.	(5)			
8.	Suppose $X \sim P(3)$ distribution. Calculate (i) $P(X=3)$, (ii) $P(X<3)$, (iii) $P(X>3)$.	(5)			
9.	There are three urns having the following composition of black and white balls.				
	Urn-II 7 white balls 3 black balls Urn-III 4 white balls 6 black balls Urn-III 2 white balls 8 black balls				
	One of these urns urns is chosen at random with probabilities 0.2, 0.6 and 0.2 respectively. From the chosen urn two balls are drawn at random without replacement. Calculate the probability that both the balls are white.				
10.	Explain chi-square goodness of fit test in brief.	(5)			
11.	 Random samples of 400 men and 600 women were asked whether they would like to have a flyover near their residence. 200 men and 325 women were in favour of the proposal. Test the hypothesis that proportions of men and women in favour of the proposal, are same against that they are not, at 5% level of significance. (Given that Z_{0.025} = 1.96.) 				
12.	A random sample of size $n(>100)$ is drawn from a population having $N(\mu, \sigma^2)$ distribution, say y_1, \ldots, y_n ($\sigma > 0$). Construct a 95% confidence interval for μ for testing $H_0: \mu = 15$ against $H_1: \mu \neq 15$. (Given that $Z_{0.975} = 1.96$.)				
	OR				
	A random sample of size 20, i.e. x_1, \ldots, x_{20} is obtained from a population following a $Bin(7, p)$ distribution. Determine the critical region for testing $H_0: p = 0.4$ against $H_1: p < 0.4$ at level of significance $\alpha = 0.05$. (Given that $Z_{0.05} = -1.645$.)				