ISOLATION, PRODUCTION, QUANTIFICATION AND CHARACTERIZATION OF AMYLASE ENZYME ISOLATED FROM BACILLUS BY USING FERMENTATION FROM BIOWASTE

Abstract:

Amylases derived from Bacillus species, produced through fermentation of biowastes, represent a sustainable solution to meet the enzymatic demands of various industries. These enzymes play a crucial role in converting starch-rich bowastes—such as agricultural residues, food processing by-products, and municipal organic waste—into valuable products like glucose and maltose. Bacillus-derived amylases are prized for their robust enzymatic activity, stability across a wide range of environmental conditions, and compatibility with industrial processes. Utilizing biowastes as mentation substrates not only addresses environmental challenges associated with waste disposal but also offers a content of these enzymes reveal their biochemical properties essential for optimizing their application in food processing, biofuel production, and pharmaceutical industries. Overall, because derived amylases from biowaste fermentation represent a sustainable biotechnological approach with significant actions for enhancing industrial efficiency and promoting environmental sustainability.

words: Bacillus subtilis, fermantation, amylase production, biowaste, DNS reagent

TABLE OF CONTENT

Particulars	Page No.
Abstract	1
Introduction	2
Materials and method	3-8
Result	9-18
Discussion	19
Conclusion	19
Future aspects	19
Reference	20-21
	Abstract Introduction Materials and method Result Discussion Conclusion Future aspects