

BRAINWARE UNIVERSITY

Term End Examination 2024-2025 Programme - M.Sc.(MATH)-2024 Course Name – Abstract Algebra Course Code - MSCMC201 (Semester II)

Library Brainware University 398, Ramkrishnapur Road, Barasat Kolkata, West Bengal-700125

Full Marks: 60

Time: 2:30 Hours

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question)

1 x 15=15

- Choose the correct alternative from the following: 1.
 - (i) The number of generators of the cyclic group $(\mathbb{Z}_{10},+)$ is

b) 4

a) 3

c) 2

d) 5

- Choose the correct option. If H and K be subgroups of a group G with O(H) = 8, O(K) = 12 and O(HK) = 24, then $O(H \cap K)$ is
 - a) 2

b) 8

c) 12

- d) 4
- (iii) Choose the correct option. If a be an element of G of order n and p is prime to n, then $O(a^p)$ is
 - a) 1

b) n

c) np

- d) None of these
- (iv) Identify the correct option. In Klein's 4-group $\{e, a, b, c\}$, the order of each non-identity elements is
 - a) 1

b) 2

c) 3

d) 4

(v)	Write the cardinality of the center of \mathbb{Z}_{12}	Brainware University 398, Ramkrishoot, Road, Barasat	
	a) 1 c) 3 Select the correct option. Let G be a group a H, then		
(vii)	 a) H ⊂ hH c) hH = H If a group is abelian, then choose the correct quotient group. 	 b) H ≠ hH d) None of these t option from below that is true for its 	
(viii)	a) Non-abelian c) Complex If $G = \{1, -1, i, -i\}$ is a multiplicative ground	 b) Abelian d) Cyclic ap, then identify the order of -i 	
	a) 1	b) 2	
	c) 3	d) 4	
(ix)	Select the correct option. If integral domain I is of finite characteristic, then		
	a) I is finite only	b) I is infinite only	
	c) I is finite or infinite only	d) None of these	
(x)	Identify the correct statement		
31	The polynomial $x^2 - 2$ is irreducible over the field of rational numbers while it is irreducible over the field of real numbers.	b) The polynomial $x^2 - 2$ is irreducible over the field of rational numbers. While it is reducible over the field of real numbers.	
	c) The polynomial $x^2 + 1$ is reducible over the field of real numbers.	d) The polynomial $x^2 + 1$ is irreducible over the field of complex numbers.	
(xi)	Select the correct option. The characteristic	of the ring of even integers is	
	a) 2	b) 1	
	c) 0	d) None of these	
(xii)	Identify the correct option from the follow	ving that is not a field.	
	a) Z/2 Z	b) Z/4 Z	
	c) Z/11Z	d) Z/5 Z	
(viii	Write the correct option. K/F is said to	be simple extension if	
(/////	a) $F = K(\alpha)$	b) $K = F(\alpha)$	
	c) $K = F$	d) None of these	
(xiv	Write the correct option. Degree of Q(⁵ √	$(\overline{2}, \sqrt{3})/\mathbb{Q}$ is	
	a) 10 c) 15	b) 6 d) 5	

(XV	A) Select the correct option. If an abelian group G of order 10 is cyclic, then G contains an element of order:	
	a) 2 b) 4	
	c) 6 d) 5	
	Group-B	3 x 5=15
	(Short Answer Type Questions)	3 7 3 20
2		(3)
۷.	Show that the characteristic of an integral domain is either zero or a prime number.	•
_		(3)
3.	Illustrate the definition of normal extension and give an example.	
		(3)
4.	Define simple group. Show that every group of prime order is simple.	(-)
	Define simple group. Show that every group of prison	
5.		(3)
٥.	Show that a group of order 35 is cyclic.	
		(3)
6.	Justify that $SL(n, \mathbb{R})$ is a normal subgroup of $GL(n, \mathbb{R})$.	(3)
	Justify that $SL(n, \mathbb{R})$ is a normal subgroup of $OL(n, \mathbb{R})$.	
	OR	
	Let G be a group and $Z(G)$ be the centre of G. Then justify that if $a \in Z(G)$ then	a (3)
	Let G be a group and 2(G) be the centre of G. Then justify that it is a (a)	
	$cl(a) = \{a\}$ and conversely.	
	Group-C	
	(Long Answer Type Questions)	5 x 6=30
	,	
	Let G be a non-commutative group of order p^3 , p a prime. Evaluate $ Z($	(5)
7.	G)[.	
	Libi	ary
	Brainware	University
	308 Ramkrishnan	III nuau, Dalasal

(5) 8. Define normaliser N(H) of a subgroup H of a group G and show that N(H) is a subgroup of G. (5)9. Let H be a finite subgroup of a group G and let $g \in G$. Establish that the order of the subgroup gHg^{-1} = the order of H. Let H be a subgroup of a group G and $a \in G$. Justify that the subset $aHa^{-1} =$ (5) $\{aha^{-1}: h \in H\}$ is a subgroup of G. (5) Explained that the polynomial $x^2 - 7$ is irreducible in $\mathbb{Q}(\sqrt{3})[x]$. 12. (5) Write down all proper subfields of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. OR (5) If $(\mathbb{R}, +, .)$ be a ring such that $(\mathbb{R}, +)$ is a cycle group, justify that the ring is commutative.

Library
Brainware University
335, Ramkrishnapur Road, Barasal
Kolfata, West Bengal-700125