

BRAINWARE UNIVERSITY

Term End Examination 2024-2025
Programme – M.Sc.(MATH)-2024
Course Name – General Topology
Course Code - MSCMC205
(Semester II)

Brainware University 398, Ramkrishnapur Road, Barasat Kolkata, West Bengal-700125

Full Marks: 60

Time: 2:30 Hours

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question)

1 x 15=15

- 1. Choose the correct alternative from the following:
- (i) Let $X = \{a, b, c, d\}$. Then select the collections of subsets that is a topological structure on X.

a)
$$\{\phi, X, \{a,b\}, \{c\}\}$$

b)
$$\{\phi, X, \{a, b\}, \{b, c\}\}$$

c)
$$\{\phi, X, \{a, b\}, \{c, d\}\}$$

d)
$$\{\phi, X, \{a, b\}, \{c\}, \{d\}\}$$

(ii) Let
$$X = \{0,1\}$$
, $\tau_1 = \{\phi, X, \{0\}, \{1\}\}$ and $\tau_2 = \{\phi, \{0,1\}\}$. Then select the correct one-

a) only
$$\tau_1$$
 is a topology on X

b) only
$$\tau_2$$
 is a topology on X

c) both
$$\tau_1$$
 and τ_2 are topologies on X

d) neither
$$\tau_1$$
 nor τ_2 is a topological structure on X

- (iii) Select the correct one: In a topological space (X, τ), the subsets ϕ and X are
 - a) always open

b) always compact

- d) None of these
- (iv) Let $X = \{a, b, c\}$. If $T_1 = \{X, \phi\}$, $T_2 = \{X, \phi, \{a, b\}\}$ are two topologies on X then identify the correct option from the followings.
 - a) T_1 is finer than T_2

- b) T_2 is finer than T_1
- c) T_1 and T_2 are not comparable
- d) $T_1 = T_2$
- (v) Select the correct option. $\overline{A \cup B}$ is equal to

a)
$$\subset \overline{A} \cup \overline{B}$$

b)
$$= \overline{A} \cup \overline{B}$$

Library Brainware University 398, Ramkrishnapur Road, Barasat Kolkata, West Bengal-700125

(vi) Select the correct option. Let X and Y be	two topological spaces and $f: X$	→ Y be
continuous, then for any subset A of X a) $f(\overline{A}) \subset \overline{f(A)}$ c) $f(\overline{A}) = \overline{f(A)}$	b) $f(\overline{A}) \supset \overline{f(A)}$ d) None of these	
 (vii) Select the correct option ext(A) =? a) int(A) c) A\int(A) (viii) Choose the correct option: Let X = {a, b, 	b) $\operatorname{int}(A^{\epsilon})$ d) $A^{\epsilon} \setminus \operatorname{int}(A)$ c} and $T = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Then T is
 a) the indiscrete topology on X c) a non-Hausdorff topology on X (ix) Choose the correct option: the diameter 	b) the discrete topology on Xd) a Hausdorff topology on X	
a) $Sup\{d(x,y) (x,y) \in A\}$ c) $Max\{d(x,y) (x,y) \in A\}$ (x) Choose the correct option: the space \mathbb{R}_l i	b) $Inf\{d(x,y) (x,y) \in A$ d) None of these	}
a) 1st countable c) countable (xi) Select the correct option: If X is a Hausdorff n the space is -	 b) 2nd countable d) None of these 	lements of
a) finitec) uncountable(xii) Select the correct option: A metric space is -	b) countably infinited) none of these	
a) T_1 but not regular c) both T_1 and regular (xiii) Select the correct option: A T_4 space is	b) regular but not T_1 d) neither regular nor T_1	
a) T_2 but not normal c) both T_2 and normal (xiv) Let X and Y are discrete topological spaces. The spaces is T_2	b) normal but not T_2 d) neither normal nor T_2 hen select X and Y are not homed	morphic
 a) only if they have same cardinality c) if and only if they have same cardinality (xv) Select a non-homeomorphic space to the space 	b) if they have same cardinalityd) None of thesee [0, 1] from the followings.	
a) (0,1) c) [0,1) ∪ (0.5,2]	b) [2,3] d) (-∞,2020) ∩ [0,2019]	
Grou (Short Answer 1		3 x 5=15
2. Examine, whether the union $T_1 \cup T_2$ of two topolog on X or not.	ies on a set X is a topology	(3)
3. If $f: X \to Y$ and $g: Y \to Z$ are two continuous $g \circ f: X \to Z$ is also continuous.	functions then show that	(3)

4. Let $S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ be the unit circle in \mathbb{R}^2 . Then establish that S^1 is closed.	
5. Analyze that $\{x \in \mathbb{Q}: -1 < x < 1\}$ is open in \mathbb{Q} but not closed in \mathbb{Q} .	(3)
6. Test that a discrete space X is second countable if and only if the set X is countable.	(3)
OR Justify that any closed subspace of a Lindeloff space is Lindeloff.	(3)
Group-C (Long Answer Type Questions)	5 x 6=30
7. Let $f:(X,\tau) \to (Y,\sigma)$ be a map. Then show that f is continuous if and only if for each $x \in X$ and any neighbourhood W of $f(x)$ in Y , there exists a neighbourhood V of x such that $f(V) \subset W$.	(5)
 Let f: X → Y be a bijective continuous function. Then deduce that f is a homeomorphism if X is compact and Y is Hausdorff. 	(5)
9. Let (X, d) be a metric space, $x \in X$ and $r > 0$. Then analyze that the open ball $B(x, r)$ is open.	(5)
10. For a subset A of a space X, examine that $\bar{A} = A \cup A'$.	(5)
11. Justify that compactness is closed hereditary.	(5)
12. Justify that if a topological space (X, τ) is second countable then it is Lindeloff.	(5)
OR Write an example of a 1 st countable space which is not 2 nd countable and justify.	(5)
本本本本等于中央中央中央中央中央中央中央中央中央中央中央中央中央中央中央中央中央中央中央	

Library
Brainware University
398, Ramkrishnapur Road, Barasat
Kolkata, West Bengal-700125