

BRAINWARE UNIVERSITY

Brainware University 398, Ramkrishnapur Road, Barasal Kolkata, West Bengal-700125

Term End Examination 2024-2025

Programme – B.Tech.(CSE)-DS-2024/B.Tech.(CSE)-CYS-2024

Course Name – Applied Digital Logic Design

Course Code - BES00018

(Semester II)

Full Marks : 60		Time : 2:30) Hours
	indicates full marks. Candidat	ites are required to give their answers in their	r own

words as far as practicable.]

	Grou (Multiple Choice	up-A Type Question)	1 x 15=15
L.	Choose the correct alternative from the following		
(i)	Select the binary equivalent of the decimal num	ber 368	
	a) 101110000 c) 111010000 Select hexadecimal equivalent number of octal of	b) 110110000 d) 111100000	
	a) C1D c) 1CD	b) D C 1 d) 1 D C	
(iii)	Select the decimal equivalent of hex number 1A		
(iv)	a) 6793c) 6973Identify which one of the following is a major disadder		
	 a) Full-adders are made up of two half-adders c) Full adders have a carry input capability 	 b) Full adders can handle double-digit d) Half adders can handle only single-only numbers 	numbers ligit
(v)	Estimate how many basic binary subtraction ope	erations are possible?	
	a) 1 c) 3	b) 4 d) 2 ction by addition in the 2's-complement	e i ji je je
	a) The minuend and the subtrahend are both changed to the 2's-complement	 b) The minuend is changed to 2's-com and the subtrahend is left in its orig 	plement inal form

	c) The minuend is left in its original form and the subtrahend is changed to its 2's-complement	d) The minuend and subtrahend are their original form	both left in	
(vii)	Choose the correct option which is a type of digit	al logic circuit		
(viii)	a) Combinational logic circuitsc) Both a & bChoose digital logic circuits can be used to add m	b) Sequential logic circuitsd) None of the mentionedore than 1 – bit simultaneously		
(ix)	 a) Full – adder c) Half – adder Choose the following is true for a full-subtractor 	b) Ripple – carry adder d) Serial adder circuit		
	a) It has two inputs and one output.	b) It performs subtraction considering	g borrow	
(x)	c) It performs subtraction without borrow. Choose the main function of a latch	from the previous stage. d) It is used only for multi-bit subtrac	ction.	
(xi)	 a) Store multiple bits of data c) Temporarily store a single bit of data Choose the output from a D flip-flop if D = 1 and 	b) Perform arithmetic operationsd) Act as a power amplifierthe clock is low		
(xii)	a) No change b) Toggle between 0 and 1 c) 0 d) 1 Choose the gate which is placed between clock input and the input of AND gate to convert a positive level triggered flip – flop to a negative level triggered flip – flop			
(xiii)	a) NOR gate c) Buffer Identify the output of an even parity checker if the odd	b) NOT gate d) NAND gate	is	
(xiv)	a) High (1) c) Undefined Identify the output of a demultiplexer when the value.	b) Low (0) d) Depends on the circuit design select lines are set to a specific binary		
	a) All outputs are activated.	 b) Only the corresponding output lin activated. 	e is	
	c) The output is always high.	 d) The output depends on the enable only. 	e signal	
(xv)	Identify the IC can be used as a 3-to-8 decoder	,		
	a) 74138 c) 74154	b) 74151 d) 7404		
	Grou	p-B		
	(Short Answer Ty	•	3 x 5=15	
2. A	pply Boolean algebra to simplify the expression	n.	(3)	
. 7	$X = \overline{A} \cdot B + A \cdot B + \overline{A} \cdot \overline{B}$			
3. 111	ustrate the difference between asynchronous and	synchronous counter	(3)	
Е	Library Grainware University			
	Ramkrishnapur Road, Barasal Ramkrishnapur Road, Barasal Olkata, West Bengal-700125	Libra	ry	
K	Page 2	Di		

Brainware On Combine 198, Ramkrishnapur Ho Kolkata, Wesi Bengai-100120

4. Convert the Octal number 237677 to a Hexadecimal Number			
5. Construct 1 line to 4 line demultiplexer.	(3)		
Library Brainware University			
6. Compare volatile and Non-Volatile memory. Brainware University Ramkrishnapur Road, Barasat	(3)		
OR			
Explain SISO register.	(3)		
Group-C			
(Long Answer Type Questions)	5 x 6=3		
7. Identify the simplified boolean expression of the following function using K-Map	(5)		
$F=\Sigma m(2,3,4,5,6,7,9,12,13,14,15)$			
8. Represent the following Boolean expression using basic gates	(5)		
Y = AB + BC + AC			
9. Describe decimal number 3.248 * 10^4 to a single-precision floating-point binary number.	(5)		
10. Explain the conversion technique of JK flip-flop to D flip-flop.			
20. Explain the control of the contr			
11. Explain the fundamental principles of Read-Only Memory (ROM), and illustrate how data is stored and retrieved from ROM cells. Write about a specific application where ROM is	(5)		
commonly used. 12. Construct 4:1 Multiplexer using 2:1 Multiplexer and one OR gate	(5)		
12. Construct 4:1 Multiplexer using 2:1 Montplexer and and a second an			
OR			
Construct 8:1 multiplexer using 4:1 multiplexer and OR gate.	(5)		