

BRAINWARE UNIVERSITY

Library **Brainware University** 398, Ramkrishnapur Road, Barasat Kolkata, West Bengal-700125

Term End Examination 2024-2025 Programme - B.Tech.(CSE)-2024/B.Tech.(CSE)-AIML-2024/B.Tech.(CSE)-AIR-2024 **Course Name – Data Structure and Algorithms** Course Code - BES07010 (T) (Semester II)

Time: 2:0 Hours Full Marks: 40

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question)

1 x 10=10

- Choose the correct alternative from the following:
- (i) The given array is arr = {1,2,3,4,5}. (bubble sort is implemented with a flag variable)Select the number of iterations require by selection sort and bubble sort respectively
 - a) 5 and 4

b) 1 and 4

c) 0 and 4

- d) 4 and 1
- (ii) Choose the correct empty condition(underflow) of circular queue.
 - a) Font == -1

b) Font == Rear

c) Font > Rear

- d) Rear == -1
- (iii) Select the sorting technique that use the term 'pivot'
 - a) Selection sort

b) Insertion sort

c) Quick sort

- d) merge sort
- (iv) Select the arrangement of the array elements after second pass using insertion sort for [34, 8, 64, 51, 32, 21]
 - a) 8, 21, 32, 34, 51, 64

b) 8, 32, 34, 51, 64, 21

c) 8, 34, 51, 64, 32, 21

- d) 8, 34, 64, 51, 32, 21
- (v) The post-order traversal of a binary tree is O P Q R S T. Choose the pre-order traversal
 - a) TQRSOP

b) TOQRPS

c) TQOPSR

- d) TQOSPR
- (vi) Select which of the following case does not exist in complexity theory
 - a) Worst case

b) Average case

c) Null case

- d) Best case
- (vii) Select which of the following FIFO method-

	a) Queue c) Hash Table	b) Stack d) Linked List	
(viii)	Select what is the purpose of asymptotic notation analysis?	•	
	a) To precisely measure the execution time of algorithms	b) To provide a lower bound on the runni time of algorithms	1
(ix)	 c) To classify algorithms based on their efficiency with respect to input size Select the characteristic that is NOT a good algo 	 d) To define algorithms in a way that min their time complexity rithm. 	imizes
	a) Efficiency c) Simplicity	b) Clarity d) Inefficiency	
(^)	Identify expression conversion in the context of a) Changing the format of an expression c) Converting numbers to text	b) Evaluating an expression d) Creating a new expression	
		ир-В	
	(Short Answer Type Questions)		3 x 5=15
3. Ir	efine asymptotic notations. terpret the pseudo code to find the running time { i = i 2; } else { i=i-2; } }	e complexity? for (int i=0; i<=n; i) { if (i %2 ==	(3) = (3)
4. Discuss suitability of B-Tree for scenarios like file systems and databases.5. Describe the Sparse Matrix with proper example6. Explain the concept of a push algorithm in a stack.			(3) (3) (3)
		DR .	4-1
E	xplain the concept of a pop algorithm in a stack.		(3)
	Gro	up-C	
	(Long Answer	Type Questions)	5 x 3=15
tı	onstruct a binary search tree for the following nuree. 45,26,10,60,70,30,40. Delete keys 10,60 and ach stage.		(5) it
	escribe the difference between time complexity	and space complexity.	(5)
9. E	xplain the algorithm for BFS using an example.		(5)
		OR	4-1
E	xplain the algorithm for DFS using an example.		(5)
	**********	******	

Library
Brainware University
398, Ramkrishnapur Road, Barasat
Kolkata, Wesi Bengal-700128